International Conference on
Automated Machine Learning
Sep 11, 2025
New York City

Tutorial 1

Limitations of State-of-the-Art and a
New Principled Framework for HPO
and Algorithm Selection

Dravyansh (Dravy) Sharma IO
IDEAL Postdoctoral Researcher BEc=an)

(Joint TTIC+Northwestern) n

What is a hyperparameter?

HP tuning is a special case of algorithm selection in Machine Learning

Hyperparameter

Real or discrete ~ tuning -@-
Best
values: each @ ’

corresponding to _—

an algorithm —

training

=

Best model
parameters

Why so common in ML?

1. Hard problems = No single good algorithm

2
3.
4.
5

Impacts everything!
1.

Model accuracy
Training time

Model size/memory
Stability/adaptivity

2. Role of data = Algorithms must adapt to domain-specific data

Hyperparameter tuning and transfer

HP tuning is important across ML

e Data prep + HP tuning take up most of the applied ML researcher hours
e Takes up to 90% of the compute :
e Critical in high-stakes and large-scale applications

HP transfer is crucial today!

e Unavoidable in LLMs where each of the above is magnified multifold!

Roadmap

% Algorithm design for machine learning (aka HP tuning)
% Current approaches in practice

> Bayesian Optimization and Bandit-based methods
% Machine learning for algorithm design

> Learning-theoretic foundations
> GJ algorithm framework

% Tuning core ML algorithms
> Decision Trees
> Neural networks

% Ongoing and future research directions

Existing approaches and their (theoretical) limitations

e Manual tuning, grid search, random search:

inefficient
unprincipled
no transfer across tasks

data-independent grids can be highly suboptimal
[Balcan et al. BNVW (COLT’17), BDDKSV (JACM'24)]

O O O O

e State-of-the-art:
o Bayesian Optimization (BO);
[e.g. Snoek et al. 2012]
o Gradient-based;
o Bandit-based

Gap: Limited theoretical understanding,
no guarantees for tuning continuous hyperparameters,
typically no transfer across tasks

Hyperparameter_One =[a, b, c]
Hyperparameter_Two=[x,y,z]
Hyperparameter_X =[1,j, k]

Hyperparameter 2

1.00

0.75

0.25

Grid Search

Random Search
Hyperparameter_One = random.num (range)
Hyperparameter_Two = random.num (range)

Hyperparameter_X = random.num (range)

Hyperparameter 2

Hyperparameter 1

GP estimate of the function

best observed value

® observed values
— = true function
= GP mean
confidence interval

0.0 0.2

0.4 0.6 0.8 1.0
hyperparameter

But how does the model performance depend on its hyperparameters?

Short answer: we don'’t really understand it!

BO works with a crude approximation: Noisy evaluation

of function with certain smoothness properties?

O

But what is the actual dependence? Even on a fixed

But how do we know what are the right

smoothness priors?
Assumptions needed on noise correlations

(kernel function)
How to search? (acquisition fns)

data instance?

GP estimate of the function

nce interval

0.2

Ahyperpa rameter

Bayesian Optimization

e Gaussian Process:
o a collection of (infinitely many) random variables that are jointly Gaussian.
o adistribution over functions — models noisy evaluation of some f(x).
o given by a mean function m(x) and covariance k(x, x).

E[f()] = m(x).
E[(f() = mO))(f(x") = m(x'))] = k(x, x).

[oe)
e Since all finite collections of function values are assumed /\\/——\/

jointly Gaussian, the conditional distribution of any new EH(X*)
point given the observed points is also Gaussian, '
i.e. distribution of mean and variance at x*, given observed
points X is

(%) = Ket, XOK(X, X f(X). S
o?(x*) = K(x*, x*) — K(x*, X)K(X, X)IK(X, x*). X =[x, X, X5, X, X;]

Bayesian Optimization

-4

GP TS - lteration 0/ 15

yl
—— GP mean
true f
® data
— — — acquisition function
@® proposed point

[Timothy Wolodzko github]

BO has its own hyperparameters!

0 50 100 0 50 100 0 50 100

Figure 2: Random functions f drawn from a Gaussian process prior with a power exponential kernel. Each
plot corresponds to a different value for the parameter oy, with a; decreasing from left to right. Varying
this parameter creates different beliefs about how quickly f(z) changes with z.

[A Tutorial on Bayesian Optimization, Frazier 2018]

Some other great tutorials:

- GP regression [Schulz, Speekenbrink, Krause] Exception [Berkenkamp, Schoellig, Krause JMLR 2019 But

- Geometric probabilistic models, UAI 2024

[Borovitskiy, Terenin]

very slow convergence!

Bandit-based approaches

Essentially bandit problems with additional HP-specific assumptions

1. Hyperband: Each arm has a noisy non-stationary reward that eventually
converges to a limiting value [Li, Jamieson, DeSalvo, Rostamizadeh, & Talwalkar (JMLR 2018)]

0.30

0.25

0.20

0.15&

0.10

. &

0.00

Loss

0 10 26 30 40 50 60
Resources

Bandit-based approaches

Essentially bandits problems with additional HP-specific assumptions

2. Rising/improving bandits: Arms have concave “learning curves”

[Heidari, Kearns, Roth (IJCAI 2016), Li et al. (AAAI 2020), Metelli et al. (ICML 2022), Mussi et al. (ICML 2024),
Blum and Ravichandran (ALT 2025)]

e
©©

—=— adaboost —e— gradient_boosting '

\
{ —+— random forest sgd
\ —+— libsvm svc

=4
o

Validation Accuracy
o o
~ o0

—— xgboost
40 80 120 160 200
Trials

o
n

Known guarantees (and lack thereof)

Bayesian optimization

— Guarantees typically need strong prior assumptions

Approaches are black-box!!
(agnostic to structure)

— Need design of kernels (with hyperparameters) and acquisition functions

Guarantees e.g. for GP-UCB assume you can magically do this!
[Srinivas, Krause, Kakade, Seegar (2010)]

Bandit-based methods

— Guarantees typically only over a finite subset of hyperparameter values (arms)

12

Roadmap

Algorithm design for machine learning (aka HP tuning)
Current approaches in practice

> Bayesian Optimization, Gradient-based and Bandit-based methods
% Machine learning for algorithm design

> Learning-theoretic foundations
> GJ algorithm framework

Tuning core ML algorithms
> Decision Trees
> Neural networks

% Ongoing and future research directions

R/ X/
24 0‘0

g

X/
0‘0

13

Data-driven a|gorithm deSign {Sﬁgrt;:?golzz?ghgarden, 2016] [Balcan, 2020]

% Algorithm families occur frequently in machine learning
o Often as tunable “hyperparameters”
o One could smoothly “interpolate” good heuristics

Regularized linear regression

B2 B
ly — XBIl3 <
<® contours <®
\ | 4 B
L1 L2
(sparse) (handles overparameterization,

multicollinearity well)

Interpolate: elastic net (best of both worlds!) i

Data-driven algorithm design [GR16, Bal20, Sha24]

% Repeated problems from the same problem domain

Expected with regular use of ML
May come randomly (optimistic) or in an adversarial sequence (pessimistic)

O

O

Day 3

15

Data-driven algorithm design [GR16, Bal20, Sha24]

% Technical challenges:

O

O

O

Algorithms form an interesting “concept space”
Sharp transition boundaries in optimization objective
Particularly tricky to handle multiple “hyperparameters”

value

16

Data-driven algorithm design [GR16, Bal20, Sha24]

e Instead of tuning for one specific problem, we tune the hyperparameter that generalizes
across a collection of related problems.

e Concretely:
o xis a problem instance from a problem set X, our (infinite) algorithm family A
o D is a problem distribution over X, representing the application-specific domain

o We also study no-regret online learning, where instances arrive in a sequence

e E.g., academic email spam filter for Gmail, or electronic products sold on Amazon

17

[Balcan and Sharma (2021)];
Example: Semi-Supervised Learning orai ss9122, top 0.6%) at Neurlps2021

% Repeated problems e.g. emails on an email server, spam vs. non-spam
Goal: learn how to connect points using a graph s.t. a (soft) min-cut yields accurate predictions

o statistical learning: tight upper+lower bounds on learning-theoretic complexity
o online learning: primal-dual style algorithms achieve no regret, under mild
assumptions

° A A A AA
A A
A A o, A ° AAAAA
[] A [] A) A
o A A o A A ® .
A A i A A ® o A A
° °
0'..0 A r o, °e%° . ‘AAA °® o A b
e ® o OAAAA R . . ‘AA o °® A A A
°* O:O:AA .o'ooo 'o: uA °* 'o'.' AA
[) o o0 o0
A)

18

Example: DeCiSion TreeS [Balcan and Sharma, UAI 2024 Outstanding Student Paper Award]

Tuning different aspects of decision tree learning

Splitting criterion (which node to split when building the tree?)
- A novel algorithmic family which unifies entropy, Gini impurity and
Kearns-Mansour criterion
- Sample complexity of selecting best splitting algorithm
Bayesian methods (Parameters to select initial tree skeleton)
Pruning (Deleting nodes to avoid overfitting)
Interpretability (Adding tree size to cost with tunable parameter)

19

Some related lines of work

Algorlthm Configuration [Kevin-Leyton Brown and Frank Hutter, ICML 2019 tutorial]

Meta-learning or Iearning to learn [Hutter and Vanschoren, NeurlPS 2018 tutorial], [Khodak, Balcan and
Talwalkar, NeurlPS 2019]

Learning-augmented algorithms [Thodoris Lykouris and Sergei Vassilvitskii, ICML 2018; Piotr Indyk’s
Course 6.890 at MIT, 2019]

20

Roadmap

Algorithm design for machine learning (aka HP tuning)
Current approaches in practice
> Bayesian Optimization, Gradient-based and Bandit-based methods
% Machine learning for algorithm design
> Learning-theoretic foundations
> GJ algorithm framework
% Tuning core ML algorithms
> Decision Trees
> Neural networks

% Ongoing and future research directions

R/ X/
24 0‘0

21

Primal and dual utility functions

e Denote input instance space X and Hyperparameter space A

e Utility (performance) on any instance for any hyperparameter are given by a function:

u(x, a): X x A — [0, H]

e Primal utility function class:
U={u, :X—[0,H] | a € A}

e Dual utility function class:
U={u*:A—[0,H] | x e X}

22

Statistical learning theory: sample complexity and pseudo-dimension

Given ¢>0and 0 <6 <1, what is the sample complexity m(s, 6)?

e Standard PAC-Learning approach: bound the learning-theoretic complexity of U
U={u :X—[0,H] | a € A}

e Complexity measure: pseudo-dimension, Pdim(U)
o The maximum size n such that U can “shatter” {x,, ..., x }, using thresholds ¢, ..., t € R

o by “shattering”, we mean [{sign(u (x,) - t,), ..., sign(u (x,)—t)| u < U}|=2"

e Classical learning theory: If Pdim(U) is finite, then m(e, 6) = O(H/*(Pdim(U) + log 1/6))

Analogue of VC dimension for real-valued functions

23

Statistical learning theory: sample complexity and pseudo-dimension

e Simple examples to illustrate pseudo-dimension

Straight lines in 2D, functions f , (x, y) =ax +by +cforreal 4, b, c.

F={f,,). Pdim(F) =2

Answer: 3

24

Primal and dual utility functions

So we want to bound the pseudo-dimension of the primal function class U.

But the structure of U is too complex!
On the otherwise, it is often easier to establish the structure of the dual class U*.

A general tool (for bounding Pdim of primal using dual structure):

Theorem [BDDKSV STOC'21]: Suppose the dual function class has a piecewise-structure with k

boundary functions coming from some function class F*, and piece functions from class G*. Then,
Pdim(U) = O((VCdim(F*) + Pdim(G*))log k).

25

Example: Linkage Clustering [BNVW COLT’17, BSS NeurlPS'24]

Example application: Linkage or hierarchical clustering.

Given a collection of n objects, organize them into hierarchy
e.g. “categories” of news articles

ALL news categories }
) 4 /\
WORLD
EVENTS } [TECHNOLOGY } SPORTS o

Brazil

South) Amerlcan
America Fesiizel Football }

26

Example: Linkage Clustering [BNVW COLT’17, BSS NeurlPS'24]

Example application: Linkage or hierarchical clustering.
Algorithm:

1. Start with each object as its own cluster.

2. Repeatedly merge “most similar” clusters.

ALL news categories }
) 4 /\
WORLD
EVENTS } [TECHNOLOGY } SPORTS o

Brazil

South) Amerlcan
America Fesiizel Football }

27

Example: Linkage Clustering [BNVW COLT’17, BSS NeurlPS'24]

Example application: Linkage or hierarchical clustering.

Algorithm:
1. Start with each object as its own cluster.
2. Repeatedly merge “most similar” clusters.

But what is “most similar’? Define a notion of distance between cluster pairs:

Single linkage: D_. (A B)y=min _, , __.d(4 D)
Complete linkage: D_ (A B)y=max__,,.,d(Db) How to tune a?

Interpolate linkage: D (A, B)=aD,_ (A, B)+(1-o)D__ (A, B)

Piecewise constant structure with poly(rn) pieces = Pdim(U) = O(log n)

28

Combined Algorithm and Hyperparameter Selection [A general tool]

What if we have multiple algorithms each with its own hyperparameters?

Algorithms: ALA, ..., A

Utility function classes (resp. Hyperparameters): U, U,, ..., U,

What is the sample complexity of algo+hyperparameter selection?

Theorem: Sample complexity of CASH is O(H?/e*(log k + max, Pdim(U))).

[Balcan and Sharma, Arxiv'25]

Roadmap

Algorithm design for machine learning (aka HP tuning)
Current approaches in practice
> Bayesian Optimization, Gradient-based and Bandit-based methods
% Machine learning for algorithm design
> Learning-theoretic foundations
> GJ algorithm framework
% Tuning core ML algorithms
> Decision Trees
> Neural networks

% Ongoing and future research directions

R/ X/
24 0‘0

30

Goldberg-Jerrum ('95) Framework

Another general useful technique for bounding the pseudo-dimension of function

classes based on algorithms with real parameters that perform arithmetic
operations.

— Original results yield Pdim bounds in terms of the running time of the algorithm.
— The corresponding bounds are sub-optimal for data-driven algorithm design.
Recent works provide refined GJ frameworks for data-driven algorithm design.

[Bartlett, Indyk, Wagner, COLT’22], [Balcan, Nguyen, Sharma, TMLR’25]

31

Refined GJ Framework [Bartlett, Indyk, Wagner, COLT’22]

Takes in:

n real
algorithm
parameters

444l

GJ (95) Algorithm

Two types of operations:
(1) Arithmetic (binary): +, —, x, +

(2) Conditional: if .. then .. else ..

Q0 =,
@ then else
5 @ O

© e+ - X, +}

Output(s): E.g.

Cluster,

: Matrix,

Regression fit, etc.

Note: All expressions
computed by the GJ algorithm
are rational functions (ratios of

polynomials) of its inputs

32

Refined GJ Framework [Bartlett, Indyk, Wagner, COLT'22]

GJ (95) Algorithm

Takes in: —> Output(s): E.g.

L eal — Two types of operations: Cluster,

algorithm . (1) Arithmetic (binary): +, —, x, + —> Matrix

parameters : (2) Conditional: if .. then .. else .. Regression fit, etc.

Theorem: Suppose the algorithm family has n real parameters. Also, for any problem instance x
and real threshold r, there is a GJ algorithm T"_ that determines whether u (a) > by evaluating
at most I distinct predicates (rational expressions) with maximum degree A. Then,

Pdim(U) = O(n log(AIT)).

33

Refined GJ Framework [Bartlett, Indyk, Wagner, COLT'22]

I : # distinct expressions

A : max degree of all p’s
and g’'s

X, 7

Theorem: Suppose the algorithm family has n real parameters. Also, for any problem instance x
and real threshold r, there is a GJ algorithm T"_ that determines whether u (a) > by evaluating
at most I distinct predicates (rational expressions) with maximum degree A. Then,

Pdim(U) = O(n log(AIT)).

34

Reﬁned GJ Framework [Balcan, Goyal, Sharma, Arxiv’25]

Example application: Tuning the ridge penalty A in linear regression.

min, || Xw - y|I* + Allw]|*

Input: Training data X, y and validation data X", y".
Goal: Tune A to minimize validation loss.

Applying GJ framework: Note that the ridge solution is w, = (X"X + AI)"'X"y.

Lemma: W, = (XTX + AI)‘lXTy is a rational function of lambda with degree at most d (#features).

= Validation loss is a rational function with degree at most 24.
= GJ algorithm to check u (A) >r has degree 24 and predicate complexity 1.

Theorem: Sample complexity of tuning A is O(log(d)/&?).

35

Reﬁned GJ Framework [Balcan, Nguyen, Sharma, NeurlPS’23]

Example application: Tuning Elastic Net coefficients.

: 2 2
min,, ||Xw =yl + Alfw]]" +

A|[w]
Input: Training data X, y an valﬁdation data X', v’
Goal: Tune A, A’ to minimize validation loss.

Lemma: The validation loss is piecewise decomposable in the A, A’ space with
— at most d3“ algebraic boundaries of degree at most d,
— at most 37 distinct piece functions, each a rational function with degree at most 24.

|dea: we can reduce Elastic Net to Lasso for a fixed A + analyze the piecewise structure for
Lasso solution (for each A) as A’. is varied.

= GJ algorithm to check u (A, A”) > r has degree 2d and < (d + 1)3% predicates.
Theorem: Sample complexity of tuning A is O(d/e?).

36

Refined GJ Framework [Bartlett, Indyk, Wagner, COLT'22]

Example application: Low-rank approximation.

Input: Given a sparse matrix A € R"*" with || A||» = 1, target rank k <n.
Goal: Sparse matrix 4 with rank k that minimizes (approximates A well).

Exact algorithm based on SVD (singular value decomposition) is inefficient!

Faster algorithm IVY [indyk, vakilian, Yuan '19] is family of parameterized heuristics
uses a m x n auxiliary matrix (runtime nearly linear in #non-zero entries!).

Theorem: Sample complexity of tuning IVY is O(mn/e?).

37

Pfaffian functions

Pfaffian function chain: A sequence of multivariate functions fi, f2, - -, q With
arguments a1, ..., An, if all partial derivatives can be expressed via polynomials
of the arguments or previous functions in the chain, i.e.
Of;
’ :Pi,'(afla'"7a'n7f17"'7fj)
(9(17;

Pfaffian function: Polynomial fn of the Pfaffian chain Q@ (aq,...,an, f1,..., fq)
Chain length, 4: number of functions in the sequence
Pfaffian degree, M: Maximum degree of a derivative polynomials

Degree, A: Maximum degree of a polynomial of a chain of Pfaffian functions, Q

38

Pfaffian functions

Examples:

1. e*® 4 a”: Chain length ? Pfaffian degree ? degree ?

2. log +/a : Chain length ? Pfaffian degree ? degree ?

3. a'2+ 4?3 : Chain length ? Pfaffian degree ? degree ?

39

Pfaffian functions

Pfaffian function chain: A sequence of multivariate functions fi, f2, - -, q With
arguments a1, ..., An, if all partial derivatives can be expressed via polynomials
of the arguments or previous functions in the chain, i.e. aZZ = Pij(a1y. s an, fi,-- -, f5)

Pfaffian function: Polynomial fn of the Pfaffian chain Q (al, ey Oy f1ye e, fq)
Chain length, 5: number of functions in the sequence

Pfaffian degree, M: Maximum degree of a derivative polynomials

Degree, A: Maximum degree of a polynomial of a chain of Pfaffian functions, Q

1. e2% 1 g3 : Chain length ? Pfaffian degree ? degree ?

40

Pfaffian functions

1. e*® 4 a”: Chain length ? Pfaffian degree ? degree ?

fi(@) =+ £ (a) = 26+ 3% = 2f, (a) ~ 2" + 30> = P(a, £,(a) ; Q(a, £,(a)) = f,(@)

Chain length = 1, Pfaffian degree = 3, degree = 1

fi@)=e"; £, (@) = f,(a) = P(a, f,(2)) ; Qa, f,(@)) = (f, (@) + @
Chain length = 1, Pfaffian degree = 1, degree = 3

41

Pfaffian functions

Pfaffian function chain: A sequence of multivariate functions fi, f2, - -, q With
arguments a1, ..., An, if all partial derivatives can be expressed via polynomials
of the arguments or previous functions in the chain, i.e. aZZ = Pij(a1y. s an, fi,-- -, f5)

Pfaffian function: Polynomial fn of the Pfaffian chain Q (al, ey Oy f1ye e, fq)
Chain length, 5: number of functions in the sequence

Pfaffian degree, M: Maximum degree of a derivative polynomials

Degree, A: Maximum degree of a polynomial of a chain of Pfaffian functions, Q

2. log +/a : Chain length ? Pfaffian degree ? degree ?

42

Pfaffian functions

2. log +/a : Chain length ? Pfaffian degree ? degree ?
fia)=loga;f'(a)=1/a
Not a polynomial in log a and a!
fi(a)=1/a; f(a) =log a;
f/(@)==a2 = P(a, f,(@) ; (@) = 1/a = P(a, f,(a), £,()) ; Q(a, f,()) = V2 f,(a)
Chain length = 2, Pfaffian degree = 2, degree = 1

43

Pfaffian functions

3. a2+ 4?3 : Chain length ? Pfaffian degree ? degree ?
fi(@)=1/a; f,(a) =a"?; f,(a) = a*"
fl(@)=-a?=~/a)*; f/ @) =a?/2="Ya. 1/a.a"*; /(@) =2a"""3= % .1/a.a*P

Q(a, fl(a), fz(a), f3(a)) = g2 4 4213
Chain length = 3, Pfaffian degree = 2, degree = 1

44

Pfaffian GJ Framework [Balcan, Nguyen, Sharma (TMLR 2025)]

Pfaffian GJ Algorithm

Takes in: — Three types of operations: Output(s): E.g.

n real :.> (1) Arithmetic (binary): +, —, x, + Cluster,

algorithm ::> (2) Conditional: if .. then .. else .. = Matrix,
parameters (3) Pfaffian function Regression fit, etc.

Theorem: Suppose the algorithm family has » real parameters. Also, for any problem instance x
and real threshold r, there is a Pfaffian GJ algorithm I',, ;. that determines whether u (o) 2 by
evaluating II distinct predicates with Pfaffian chain length g, degree A, and Pfaffian degree M.

Then, Pdim (/) = O (n*¢® + ngln (A + M) + nln1I)

45

Pfaffian GJ Framework Example: Linkage Clustering sns tvir2s)

Algorithm:
1. Start with each object as its own cluster.

2. Repeatedly merge “most similar” clusters.

But what is “most similar’? Define a notion of distance between cluster pairs:

Single linkage: D_. (A B)y=min _ , , _.d(4 D)
Complete linkage: D__ (A B)=max__ ,, . ,d(4 b)

How to tune «, g7

Also, what if we have multiple distances d,d, .. dL?

1. Interpolate distances: d,= g, d,+p,d,+... +5,d,
f).l/lgterpolate linkage: Da/ﬂ A/ B)=(min, _,, ., (dﬁ(a, D))*+min, _ , , . p (dﬂ(a, b)) N

Pfaffian GJ Framework Example: Linkage Clustering sns tvir2s)

Algorithm:
1. Start with each object as its own cluster.
2. Repeatedly merge “most similar” clusters.

Da/ﬂ(A, B)=(min_ _, -, (dﬂ(a, D))*+min _ , (dﬂ(a, b))V
The algorithm uses exponents:
so arithmetic operations not enough to compute the clusters!

But Pfaffian GJ framework applies!

Theorem: Sample complexity of tuning a, B is O(n*L?/&?).

47

Pfaffian GJ Framework Example: Linkage Clustering sns tvir2s)

Algorithm: aa
€0, What are the

1. Start with each obj?c:t as it§ o_wn”CIuster. N Pfaffian chains?
2. Repeatedly merge “most similar” clusters.

Da,p(A/ B) = (min (a, b))* + min (a, b))a)l/a

geA,beB(dﬂ aEA,bEB(dﬂ

Merge decisions are governed by boundaries given by following inequation in «, B
D, ﬁ(A, B) = D_ ﬁ(A’, B)

for some clusters A, B, A’, B’

Equivalently, the boundaries are given by (at most n® equations)

(dﬁ(ﬂl, bl))a + (dﬂ(azl bz))a o (dﬂ((l?), b3))a o (dﬁ(a4/ b4))a <0

for some points a, bl, a,, bz, s, b3, a, b A 48

Pfaffian GJ Framework Example: Linkage Clustering sns tvir2s)

o o a a »z=2 What are the
(dﬂ(al’ by)) +(dﬂ(a2’ b,)) _(dﬂ(%’ by)) _(dﬂ(a4’ b,))"=0 529 Pfaffian chains?

For each pair of points (a, b), define 3 functions

=1/d_(a, b) ; - -
jg;;b:’(g)) 1£1 ﬁfia,)b); Pfaffian chain: {f ,B)}, ,, (g, ,B), ,»» {1, ,B)}, ,

h, () = (dy(a b))

Chain length < 3n?, degree 1, Pfaffian degree 2
Number of parameter=L +1

Number of distinct predicates < n®

Our result implies Pdim(U) = O(n*L?)

49

Roadmap

Algorithm design for machine learning (aka HP tuning)
Current approaches in practice

> Bayesian Optimization, Gradient-based and Bandit-based methods
% Machine learning for algorithm design

> Learning-theoretic foundations
> GJ algorithm framework

<% Tuning core ML algorithms
> Decision Trees
> Neural networks

% Ongoing and future research directions

R/ X/
24 0‘0

50

Applications [ML, stats, optimization]

Low-rank approximation [Bartlett, Indyk, Wagner, COLT 2022]

Regularizing linear (Elastic Net) and logistic regression [BKST NeurlPS 2022, BNS NeurlPS
2023, BGS 2025]

Simulated Annealing [Blum, Dan, Seddighin, AISTATS 2021]

Learning to branch and cut [Balcan, Dick, Sandholm, Vitercik, ICML 2018, JACM 2024]

Clustering (both k-center and hierarchical) [BNvw coLT 2017, BDW NeurlPS 2018, BDL ICLR 2020]
Gradient descent [Gupta and Roughgarden, ITCS 2016]

Integer and Linear Programming [Balcan et al., Khodak et al., Cheng and Basu, Sakaue and Oki (2024)]

51

More applications [CS theory, Comp bio, Mech design, Energy ...]

Knapsack, Maximum Weighted Independent Set [Gupta and Roughgarden, ITCS 2016, Balcan et
al., FOCS 2018, Sun et al. 2022]

Max cut, Max 2-SAT [Balcan et al., COLT 2017]
Dynamic Programming, Sequence Alignment [Balcan et al., COLT 2017, STOC 2021, NeurlPS 2024]
Mechanism and game design [Balcan et al., EC18, NeurlPS 24, Jin et al. NeurlPS 24, Diitting et al. EC 2025]

Energy and climate science [Mathioudaki et al., 2023, Bostandoost et al. 2024]

52

Open questions and research directions

e Provable tuning of hyperparameters in other fundamental algorithms and
areas, E.g.
o Causal inference algorithms
o Constraint Satisfaction e.g. algorithms for SAT
o Graph Algorithms
o Bayesian Optimization itself! (e.g. [Sharma and Suggala (AAAI 25)] tune GP bandits)
o ...
e Computational efficiency and complexity of hyperparameter tuning
e Lower bounds on sample complexity
o Tight bounds known only in some cases

Roadmap

Algorithm design for machine learning (aka HP tuning)
Current approaches in practice
> Bayesian Optimization, Gradient-based and Bandit-based methods
% Machine learning for algorithm design
> Learning-theoretic foundations
> GJ algorithm framework
% Tuning core ML algorithms
> Decision Trees
> Neural networks

% Other aspects, ongoing and future research

R/ X/
24 0‘0

54

ML needs to be interpretable!

Trustworthy?
Biased?
Black Box
INPUT OUTPUT
Key

factors??

S

Decision Trees

Trees for classification:

- Each internal node < Splitting rule
- Each leaf node < Single Class

Interpretable ML models

- axis-parallel decision boundaries Screen Do Screen Do
- Neural nets are hard to interpret Jig Retilng Mg L=ty

Hard to learn optimal trees, but several useful heuristics!

Learning optimal decision trees is hard!

Hardness of DT learning

- NP-complete. [Laurent and Rivest (1976)]
- Superconstant Inapproximability of Decision Tree Learning.

[Koch et al. COLT 2024] [Koch and Strassle FOCS 2023, FOCS 2024]

Faster optimal decision trees (speed up the exp time branch-and-bound algorithm)

[Hu et al. NeurlPS 2019]
[McTavish et al. AAAI 2022]
[Babbar et al. ICML 2025] (combines greedy with branch-and-bound)

Splitting criterion (a greedy approach)

Top-down decision tree learning
Inputs: Node function class F, tree size t,
splitting criterion G

Splitting criterion

O

Top-down decision tree learning
Inputs: Node function class F, tree size t,
splitting criterion G
e Start with leaf node

Splitting criterion

Top-down decision tree learning
Inputs: Node function class F, tree size t,
splitting criterion G
e Start with leaf node
e While at most t leaf nodes
o Split leaf node | using node function f
which maximizes “splitting criterion”

Splitting criterion

Top-down decision tree learning

. . YE
Inputs: Node function class F, tree size t, > NO
splitting criterion G Screen Do
e Start with leaf node lungs nothing

e While at most t leaf nodes
o Split leaf node | using node function f
which maximizes “splitting criterion”

F = {Smoke, Age >30, Age >50}

Splitting criterion

Top-down decision tree learning

Inputs: Node function class F, tree size t, VES NO
splitting criterion G S
e Start with leaf node lungs > 90
e While at most t leaf nodes YEy NO
o Split leaf node | using node function f Sercen e
which maximizes “splitting criterion” LG nothing
Key decision: Which node F = {Smoke, Age >30, Age >50}

to split next and how?

Splitting criterion

@ learn DecisionTreeClassifier

class sklearn.tree.DecisionTreeClassifier(x, criterion='gini',
splitter="'best', max_depth=None, min_samples_split=2, min_samples_leaf=1,
min_weight_fraction_leaf=0.0, max_features=None, random_state=None,

max_Lleaf_nodes=None, min_impurity_decrease=0.0, class_weight=None,
ccp_alpha=0.0, monotonic_cst=None) [source]
A decision tree classifier.

Read more in the User Guide.

Parameters:

criterion : |{“gini”, “entropy”, “log_loss"}, default="gini"”

Splitting criterion

Empirical research suggests different criteria work best on different data mingers 1989
e Entropy criterion
e Gini impurity
e Kearns Mansour 96

Algorithm selection via hyperparameter tuning

(o, B)-Tsallis entropy

A single criterion which interpolates all three!

C & X
G d () == |1~ (Zﬁ)

Splitting criterion

gTsALLIS(p) Gini impurity
TSALLIS | KM36
g%’2 (P)
Entropy

TSALLIS

lima—ﬂ ga,l (P)

Splitting criterion

Banknote Breast ncer Wine

TSALLIS inii 1

ki =) Gini impurity
TSALLIS KM96

glg (fﬁ
27
| Entropy

limes1 GRS (P)

12345678 12345678 12345678

12345678
p 8 ’ 4

Splitting criterion

gTSALLIS(D) Gini impurity
TSALLIS | KM96

g%,z (P)
- Entropy

TSALLIS

limg—1 9a,1 (P)

12345678
B

Breast cancer Wine

Banknote

12345678

12345678
P 8 8

1 23456178

Theorem: We can learn to tune («, 3) using O (“%2'5@) problem samples.

Splitting criterion

Theorem: We can learn to tune («, 3) using O (“L%Lﬁ) problem samples.

Proof insights:
e Analyse accuracy as a function of (a,) on a fixed instance (X, y)
e Induction over top-down rounds, bounding the number of distinct
behaviors (which node is split and how) in each round
e Over t rounds, O(| F |*t*) distinct behaviors, which implies
pseudo-dimension is O(t log | F |¢).

Interpretability vs accuracy

Modified objective, R(T, D) = L(T, D) + 1| leaves(T) |

Similar to cost-complexity pruning, but also modify test loss

- 1 controls the accuracy-interpretability trade-off
- we tune splitting/pruning hyperparameters simultaneously to maximize the
modified objective

Gradient-boosted decision trees

Regularized objective over a collection of K trees (size at most t),
L({T}, D)=I({T}, D)+ 2 A }_||weights of leaves in T ||

Splitting-criterion in XGBOOST [chen and Guestrin (2016)]:

- Across all nodes of all trees in the ensemble, split the one that maximizes a

score based on first and second order gradients _G. , Gk _ &
HL+X ' Hp+XA H+)

State-of-the-art approach for tabular datasets!
[McElfresh et al. (NeurlPS 2023), Jayawardhana et al. (2025)]

We use a GJ framework based analysis.

Gradient-boosted decision trees

Regularized objective over a collection of K trees (size at most t),
L({T}, D)=I({T}, D)+ 2 A }_||weights of leaves in T ||

Splitting-criterion in XGBOOST [chen and Guestrin (2016)]:

- Across all nodes of all trees in the ensemble, split the one that maximizes a

score based on first and second order gradients _G. , Gk _ &
Ho+X ' Hg+X H+X

There are at most tK| F| different candidate splits, or at most ?K?| F|? pairs
Also over the course of XGBOOST, we have at most tK splits.
= Computable using a GJ algorithm with at most (?K?| F|?)X predicates (degree 6)

= Pdim(U) = O(tK log(tK]| H]))

Open questions and research directions

Efficient implementations of learning algorithms
Extensions to other interpretable techniques
Lower bounds on sample efficiency

Online learning

Combining with other guarantees e.g. robustness

Roadmap

Algorithm design for machine learning (aka HP tuning)
Current approaches in practice
> Bayesian Optimization, Gradient-based and Bandit-based methods
% Machine learning for algorithm design
> Learning-theoretic foundations
> GJ algorithm framework
% Tuning core ML algorithms
> Decision Trees
> Neural networks

% Other aspects, ongoing and future research

R/ X/
24 0‘0

73

Tuning deep networks: parameters and hyperparameters

PR

fixed during training

e Hyperparameter space A=[a_ ., « C R (hyperparameter o)

min’ max]

updated during training

e Model parameter space W C R (parameters/weights w)—— |

e Example (learning activation functions):
o Consider a DNN T w with model weights w = (w,, ..., w,)

4

o Parametric RelLU activation function i
f=y
-f > t
PReLU(z) =4 1220 70 =ay d
ar, otherwise

o More generally, one can interpolate* any activation functions
0(z) = a0,(z) + (1 —) 0,(z)

where o,, 0, are common activation functions, « is interpolation hyperparameter

*inspired by DARTS approach for Neural Architecture Search [Liu et al. ICLR’19]

Model vs optimization hyperparameters

“model” or “architectural” hyperparameters:

® Are directly a part of the learned deep network Ty w
e Impact training, but stay fixed as we learn the weights w

e.g. activation function parameters,

o
gesoei’

kernel parameter in graph neural networks

“optimization” hyperparameters in the training procedure:
e They impact training too, but their effect on the learned network is fully captured by w

e.g. learning rate

8oi;

75

Formalism: the utility function

e Parameter-dependent utility function f(x, a, w)
the performance when using hyperparameter a and parameter w, operating on problem
instance x

e Utility function u (x) =sup_ f(x, @, w)

the performance of trained network using hyperparameter «, operating on problem instance x

e Example
o flx, ¢, wy=H—|ly—1_ w(X)||22 is the parameter-dependent utility function
(the loss is ||y — me(X)llzz)

0 u (x) =sup_ f(x, a, w) is the utility function

76

Formalism: data-driven hyperparameter tuning

e Tuned hyperparameter 4 that has performance close to the optimal a* = max E__[u_(x)]
[E, plu,(0)]-E, _plu ()] <e

with probability at least 1 — 6, using problem instances x,, ..., x,_~ D"

e Question: How many problem instances m(e, 6) are enough?

77

Statistical learning theory: sample complexity and pseudo-dimension

Given ¢ >0 and 0< 6 <1, what is the sample complexity m(e, 6)?

e Standard PAC-Learning approach: bound the learning-theoretic complexity of U
U={u,:X—[0,H] |l a< A

e Complexity measure: pseudo-dimension, Pdim(U)
o The maximum size n such that U can “shatter” {x,, ..., x }, using thresholds ¢, ... , t € &

o by “shattering”, we mean |[{sign(u_(x,) —t,), ..., sign(u (x) — ¢)l u_ € U}|=2"

e Classical learning theory: If Pdim(U) is finite, then m(e,) = O(H**(Pdim(U) + log 1/6))

78

Piecewise polynomial parameter-dependent utility function ns anivs)

e Recall utility function: u _(x) =sup_ f(x, a, w), where
parameter-dependent utility: f(x, a, w)

e Motivated by classical work on NNs*, we assume: for any fixed problem instance x,
the parameter-dependent dual f (a, w) := f(x, o, w) admits a piecewise polynomial
structure:

o There are polynomial boundary functions _,(a, w), ..., h_, (a, w) ...

o that partition the domain A X W of f (a, w) into connected components “pieces”
R ,..,R

x1/ """ " 'x,N

o f(a w)restricted on R_.is polynomial f_(«, w) (piece function)

*[Bartlett et al. 1998, Bartlett et al. 2019] 79

Piecewise polynomial structure: an example

boundary functions

Boundary functions k_, and /_

2

80

Piecewise polynomial structure: an example

e Boundary functions i, and i,

/ e partition domain into connected

components Rx,l’ . Rx,N

Ix(a,w) and u} ()

Connected components

Piecewise polynomial structure: an example

polynomial surfaces

e Boundary functions hx1 and hx’2

e partition domain into connected

components erl, cee Rx’N

e f (o w)restricted on R_.is poly. fx, (o, w)

82

Piecewise polynomial structure: an example

e Boundary functions hx1 and hx’2

e partition domain into connected

components erl, cee Rx’N

e f (o w)restricted on R_.is poly. fx, (o, w)

To bound Pdim(U), we're interested in:

u* (@) =u(x)=sup_f(a w)

83

Key mathematical question

boundary functions

If f (o, w) is piecewise-polynomial, can we
give a bound on the piecewise structure of

u* (a) =u (x)=sup_f (o w)

To bound Pdim(U), it is sufficient to bound
the number of discontinuities and number
of local maxima of u* («)

84

Main reSUIt [Balcan, Nguyen, Sharma, Arxiv’25]

Theorem (informal): Pdim(U) = O(log N + d log(AM)), where

N is the number of connected components
M is the number of boundaries
d is the dimension of w

A is the maximum polynomial degree

85

Learning the interpolated activation function

e DNNT< with L layers
a,w

e Layeri: W params (total W), k. nodes (total k)

e o0(z)=ao0(z)+(1-a)o,(z),where o, o,piecewise poly. = seseeseeseasaaea.
with max degree A, p breakpoints

e T samples (not assumed iid) in each problem instance

86

Learning the interpolated activation function

Theorem (informal): Pdim(U) = O(log N + d log(AM)), where

N is the number of connected components
M is the number of boundaries
d is the dimension of w

A is the maximum polynomial degree

Application: For the activation function interpolation:
Pdim(U) = O(L*W log A + LW log(Tpk))

87

Beyond model parameters: gradient descent

Gradient descent algorithm

Inputs: initial point x, iterations H, threshold 0. Hyperparameter: n

1: Initialize z1 < x
2: for:=1,...,Hdo

W

Output: x,

if ||V f(z;)|| < 6 then
Return z;
Tit1 = T3 — NV f(;)

Prior work by Gupta and Roughgarden (2016):
Assumes: f is convex and smooth

Sample complexity of tuning learning rate is O(H?%.?)

We get O(H?%?) sample complexity even for
non-convex non-smooth functions!

88

Roadmap

Algorithm design for machine learning (aka HP tuning)
Current approaches in practice

> Bayesian Optimization, Gradient-based and Bandit-based methods
% Machine learning for algorithm design

> Learning-theoretic foundations
> GJ algorithm framework

Tuning core ML algorithms
> Decision Trees
> Neural networks

*» Ongoing and future research

R/ X/
24 0‘0

X/
0‘0

g

L)

9,

89

Open questions and research directions

Other applications to tuning important hyperparameters and algorithms
Focus on statistical complexity ¥ ——— computationally efficient methods?
Making currently used approaches in practice more structure-aware
Beyond the worst-case complexity: distribution-dependent bounds

e.g. [Balcan, Goyal, Sharma (2025)]

More challenging high-dimensional and distributed settings

Connecting theory with practice!
[NeurlPS 2025 tutorial with Colin White (Meta) and Nina Balcan (CMU)]

90

References

[1] Mockus, Jonas. "The Bayesian approach to local optimization." In Bayesian approach to global optimization: Theory and applications, pp. 125-156.
Dordrecht: Springer Netherlands, 1989.

[2] Linial, Nathan, Yishay Mansour, and Noam Nisan. "Constant depth circuits, Fourier transform, and learnability." Journal of the ACM (JACM) (1993).

[3] Srinivas, Niranjan, Andreas Krause, Sham Kakade, and Matthias Seeger. "Gaussian Process Optimization in the Bandit Setting: No Regret and
Experimental Design." In Proceedings of the 27th International Conference on Machine Learning, pp. 1015-1022. Omnipress, 2010.

[4] Bergstra, James, Rémi Bardenet, Yoshua Bengio, and Balazs Keégl. "Algorithms for hyper-parameter optimization." Advances in neural information
processing systems 24 (2011).

[5] Maclaurin, Dougal, David Duvenaud, and Ryan Adams. "Gradient-based hyperparameter optimization through reversible learning." In International
conference on machine learning, pp. 2113-2122. PMLR, 2015.

[6] Domhan, Tobias, Jost Tobias Springenberg, and Frank Hutter. "Speeding up automatic hyperparameter optimization of deep neural networks by
extrapolation of learning curves." In [IJCAI, vol. 15, pp. 3460-8. 2015.

[7] Gupta, Rishi, and Tim Roughgarden. "A PAC approach to application-specific algorithm selection." In Proceedings of the 2016 ACM Conference on
Innovations in Theoretical Computer Science, pp. 123-134. 2016.

[8] Jamieson, Kevin, and Ameet Talwalkar. "Non-stochastic best arm identification and hyperparameter optimization." In Artificial intelligence and statistics, pp.
240-248. PMLR, 2016.

[9] Finn, Chelsea, Pieter Abbeel, and Sergey Levine. "Model-agnostic meta-learning for fast adaptation of deep networks." In International conference on
machine learning, pp. 1126-1135. PMLR, 2017.

Dravyansh Sharma

References

[10] Frazier, Peter |. "A tutorial on Bayesian optimization." arXiv preprint arXiv:1807.02811 (2018).

[11] Balcan, Maria-Florina, Travis Dick, and Ellen Vitercik. "Dispersion for data-driven algorithm design, online learning, and private optimization." In 2018
IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pp. 603-614. IEEE, 2018.

[12] Franceschi, Luca, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil. "Bilevel programming for hyperparameter optimization
and meta-learning." In International conference on machine learning, pp. 1568-1577. PMLR, 2018.

[13] Li, Lisha, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. "Hyperband: A novel banditbased approach to
hyperparameter optimization." Journal of Machine Learning Research 18, no. 185 (2018): 1-52.

[14] Falkner, Stefan, Aaron Klein, and Frank Hutter. "BOHB: Robust and efficient hyperparameter optimization at scale." In International conference on
machine learning, pp. 1437-1446. PMLR, 2018.

[15] Balcan, Maria-Florina, Travis Dick, Tuomas Sandholm, and Ellen Vitercik. "Learning to branch." In International conference on machine learning, pp.
344-353. PMLR, 2018.

[16] Kandasamy, Kirthevasan, Willie Neiswanger, Jeff Schneider, Barnabas Poczos, and Eric P. Xing. "Neural architecture search with bayesian
optimisation and optimal transport." Advances in neural information processing systems 31 (2018).

[17] Hazan, Elad, Adam Klivans, and Yang Yuan. "Hyperparameter Optimization: A Spectral Approach." ICLR (2018).

[18] Liu, Hanxiao, Karen Simonyan, and Yiming Yang. "DARTS: Differentiable Architecture Search." In International Conference on Learning
Representations, 2019.

Dravyansh Sharma

References

[19] Berkenkamp, Felix, Angela P. Schoellig, and Andreas Krause. "No-regret Bayesian optimization with unknown hyperparameters." Journal of
Machine Learning Research 20, no. 50 (2019): 1-24.

[20] Tan, Mingxing, and Quoc Le. "Efficientnet: Rethinking model scaling for convolutional neural networks." In International conference on machine
learning, pp. 6105-6114. PMLR, 2019.

[21] Feurer, Matthias, and Frank Hutter. Hyperparameter optimization. Springer International Publishing, 2019.

[22] Li, Liam, and Ameet Talwalkar. "Random search and reproducibility for neural architecture search." In Uncertainty in artificial intelligence, pp. 367-
377. PMLR, 2020.

[23] Maria-Florina Balcan. Data-Driven Algorithm Design. In Tim Roughgarden, editor, Beyond the Worst-Case Analysis of Algorithms. Cambridge
University Press, 2020.

[24] Kandasamy, Kirthevasan, Karun Raju Vysyaraju, Willie Neiswanger, Biswajit Paria, Christopher R. Collins, Jeff Schneider, Barnabas Poczos, and
Eric P. Xing. "Tuning hyperparameters without grad students: Scalable and robust bayesian optimisation with dragonfly." Journal of Machine Learning
Research 21, no. 81 (2020): 1-27.

[25] Balcan, Maria-Florina, Travis Dick, and Manuel Lang. "Learning to Link." In International Conference on Learning Representation. 2020.
[26] Lin, Jimmy, Chudi Zhong, Diane Hu, Cynthia Rudin, and Margo Seltzer. "Generalized and scalable optimal sparse decision trees." In International

conference on machine learning, pp. 6150-6160. PMLR, 2020.

[27] Kaplan, Jared, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario
Amodei. "Scaling laws for neural language models." arXiv preprint arXiv:2001.08361 (2020).

Dravyansh Sharma

References

[28] Balcan, Maria-Florina, Travis Dick, and Manuel Lang. "Learning to Link." In International Conference on Learning Representation. 2020.

[29] Parker-Holder, Jack, Vu Nguyen, and Stephen J. Roberts. "Provably efficient online hyperparameter optimization with population-based bandits."
Advances in neural information processing systems 33 (2020): 17200-17211.

[30] Maria-Florina Balcan, Travis Dick, and Dravyansh Sharma. "Learning piecewise Lipschitz functions in changing environments." In International
Conference on Artificial Intelligence and Statistics, pp. 3567-3577. PMLR, 2020.

[31] Balcan, Maria-Florina, and Dravyansh Sharma. "Data driven semi-supervised learning." NeurlPS (2021): 14782-14794.

[32] Balcan, Maria-Florina, Dan DeBlasio, Travis Dick, Carl Kingsford, Tuomas Sandholm, and Ellen Vitercik. "How much data is sufficient to learn high-
performing algorithms? Generalization guarantees for data-driven algorithm design." Symposium on Theory of Computing (STOC), 2021.

[33] Blum, Avrim, Chen Dan, and Saeed Seddighin. "Learning complexity of simulated annealing." In International conference on artificial intelligence and
statistics, pp. 1540-1548. PMLR, 2021.

[34] Yang, Greg, and Edward J. Hu. "Tensor programs iv: Feature learning in infinite-width neural networks." In International Conference on Machine
Learning, pp. 11727-11737. PMLR, 2021.

[35] Balcan, Maria-Florina, Mikhail Khodak, Dravyansh Sharma, and Ameet Talwalkar. "Learning-to-learn non-convex piecewise-Lipschitz functions."
Advances in Neural Information Processing Systems 34 (2021): 15056-15069.

[36] Bartlett, Peter, Piotr Indyk, and Tal Wagner. "Generalization bounds for data-driven numerical linear algebra." In Conference on Learning Theory,
2022.

[37] Balcan, Maria-Florina, Mikhail Khodak, Dravyansh Sharma, and Ameet Talwalkar. "Provably tuning the ElasticNet across instances." Advances in
Neural Information Processing Systems 35 (2022): 27769-27782.

Dravyansh Sharma

References

[38] Sun, Bo, Lin Yang, Mohammad Hajiesmaili, Adam Wierman, John CS Lui, Don Towsley, and Danny HK Tsang. "The online knapsack problem with
departures." Proceedings of the ACM on Measurement and Analysis of Computing Systems 6, no. 3 (2022): 1-32.

[39] Hoffmann, Jordan, Sebastian Borgeaud, Arthur Mensch, ElenaBuchatskaya, Trevor Cai, Eliza Rutherford, Diego de Las Casas et al. "Training
compute-optimal large language models." arXiv preprint arXiv:2203.15556 (2022).

[40] Lindauer, Marius, Katharina Eggensperger, Matthias Feurer, André Biedenkapp, Difan Deng, Carolin Benjamins, Tim Ruhkopf, René Sass, and Frank
Hutter. "SMAC3: A versatile Bayesian optimization package for hyperparameter optimization." Journal of Machine Learning Research 23 (2022): 1-9.

[41] Balcan, Maria-Florina, Anh Nguyen, and Dravyansh Sharma. "New bounds for hyperparameter tuning of regression problems across instances."
Advances in Neural Information Processing Systems 36 (2023): 80066-80078.

[42] Sharma, Dravyansh, and Maxwell Jones. "Efficiently learning the graph for semi-supervised learning." In Uncertainty in Artificial Intelligence, 2023.

[43] Silwal, Sandeep, Sara Ahmadian, Andrew Nystrom, Andrew McCallum, Deepak Ramachandran, and Seyed Mehran Kazemi. 'KwikBucks: Correlation
Clustering with Cheap-Weak and Expensive-Strong Signals." In The Eleventh International Conference on Learning Representations, ICLR (2023).

[44] Balcan, Maria-Florina, Avrim Blum, Dravyansh Sharma, and Hongyang Zhang. "An analysis of robustness of non-Lipschitz networks." Journal of
Machine Learning Research 24, no. 98 (2023): 1-43.

[45] Koch, Caleb, Carmen Strassle, and Li-Yang Tan. "Properly learning decision trees with queries is NP-hard." In 2023 IEEE 64th Annual Symposium on
Foundations of Computer Science (FOCS), pp. 2383-2407. IEEE, 2023.

[46] Mathioudaki, Angeliki, Georgios Tsaousoglou, Emmanouel Varvarigos, and Dimitris Fotakis. "Data-Driven Optimization of Electric Vehicle Charging
Stations." In 2023 International Conference on Smart Energy Systems and Technologies (SEST), pp. 1-6. IEEE, 2023.

Dravyansh Sharma

References

[47] Sharma, Dravyansh. "Data-driven algorithm design and principled hyperparameter tuning in machine learning." PhD dissertation, CMU (2024).

[48] Balcan, Maria-Florina, and Dravyansh Sharma. "Learning Accurate and Interpretable Decision Trees." In Uncertainty in Artificial Intelligence, pp. 288-307.
PMLR (2024). Extended version “Learning Accurate and Interpretable Tree-based Models” arXiv preprint arXiv:2405.15911 (2025).

[49] Franceschi, Luca, Michele Donini, Valerio Perrone, Aaron Klein, Cédric Archambeau, Matthias Seeger, Massimiliano Pontil,and Paolo Frasconi.
"Hyperparameter Optimization in Machine Learning." arXiv preprint arXiv:2410.22854 (2024).

[50] Sharma, Dravyansh. "No internal regret with non-convex loss functions." In Proceedings of the AAAI Conference on Artificial Intelligence, vol. 38, no. 13,
pp. 14919-14927. 2024.

[51] Cheng, Hongyu, and Amitabh Basu. "Learning cut generating functions for integer programming." Advances in Neural Information Processing Systems 37
(2024): 61455-61480.

[52] Balcan, Maria-Florina, Christopher Seiler, and Dravyansh Sharma. "Accelerating ERM for data-driven algorithm design using output-sensitive techniques.
Advances in Neural Information Processing Systems 37 (2024): 72648-72687 .

[53] Sakaue, Shinsaku, and Taihei Oki. "Generalization bound and learning methods for data-driven projections in linear programming." Advances in Neural
Information Processing Systems 37 (2024): 12825-12846.

[54] Elias, Marek, Haim Kaplan, Yishay Mansour, and Shay Moran. "Learning-augmented algorithms with explicit predictors." Advances in Neural Information
Processing Systems 37 (2024): 97972-98008.

[565] Sambharya, Rajiv, Georgina Hall, Brandon Amos, and Bartolomeo Stellato. "Learning to warm-start fixed-point optimization algorithms." Journal of
Machine Leamning Research 25, no. 166 (2024): 1-46.

Dravyansh Sharma

References

[56] Dumouchelle, Justin, Esther Julien, Jannis Kurtz, and Elias B. Khalil. "Neur2bilo: Neural bilevel optimization." Advances in Neural Information Processing
Systems 37 (2024): 86688-86719.

[57] Xie, Yagqi, Will Ma, and Linwei Xin. "VC theory for inventory policies." arXiv preprint arXiv:2404.11509 (2024).

[58] Bostandoost, Roozbeh, Walid A. Hanafy, Adam Lechowicz, Noman Bashir, Prashant Shenoy, and Mohammad Hajiesmaili. "Data-driven Algorithm
Selection for Carbon-Aware Scheduling." ACM SIGENERGY Energy Informatics Review 4, no. 5 (2024): 148-153.

[59] Sharma, Dravyansh, and Arun Suggala. "Offline-to-online hyperparameter transfer for stochastic bandits." In Proceedings of the AAAI Conference on
Atrtificial Intelligence, vol. 39, no. 19, pp. 20362-20370. 2025.

[60] Balcan, Maria-Florina, Anh Tuan Nguyen, and Dravyansh Sharma. "Sample complexity of data-driven tuning of model hyperparameters in neural
networks with structured parameter-dependent dual function." Advances in Neural Information Processing Systems 38 (2025).

[61] Schneider L, Bischl B, Feurer M. "Overtuning in Hyperparameter Optimization." 4th International Conference on Automated Machine Learning AutoML
(2025).

[62] Balcan, Maria-Florina, Anh Tuan Nguyen, and Dravyansh Sharma. "Algorithm Configuration for Structured Pfaffian Settings." TMLR (2025).

[63] Jiao, Xianqi, Jia Liu, and Zhiping Chen. "Learming complexity of gradient descent and conjugate gradient algorithms." In Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 39, no. 17, pp. 17671-17679. 2025.

[64] Ditting, Paul, Michal Feldman, Tomasz Ponitka, and Ermis Soumalias. "The pseudo-dimension of contracts." In Proceedings of the 26th ACM
Conference on Economics and Computation, pp. 514-539. 2025.

Dravyansh Sharma

References

[65] Blum, Avrim, and Vaidehi Srinivas. "Competitive strategies to use “warm start” algorithms with predictions." In Proceedings of the 2025 Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 3775-3801. Society for Industrial and Applied Mathematics, 2025.

[66] Iwata, Tomoharu, and Shinsaku Sakaue. "Learning to Generate Projections for Reducing Dimensionality of Heterogeneous Linear
Programming Problems." In Forty-second International Conference on Machine Learning (2025).

[67] Balcan, Maria-Florina, Saumya Goyal, and Dravyansh Sharma. "Distribution-dependent Generalization Bounds for Tuning Linear Regression
Across Tasks." arXiv preprint arXiv:2507.05084 (2025).

[68] Du, Ally Yalei, Eric Huang, and Dravyansh Sharma. "Tuning Algorithmic and Architectural Hyperparameters in Graph-Based Semi-Supervised
Learning with Provable Guarantees." In The 41st Conference on Uncertainty in Artificial Intelligence (2025).

[69] Sharma, Dravyansh. “Gradient Descent with Provably Tuned Learning-rate Schedules.” arXiv preprint arXiv:2512.05084 (2025).

Dravyansh Sharma

