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DECISION TREES SPLITTING CRITERION BAYESIAN TREES PRUNING
Interpretability of model predictions is a major Top-down learning Two-phase randomized algorithm. Post-processing to
challenge in modern machine learning! . .
Inputs: Node function class F, tree size t, Prior * Reduce overfitting
e Decision trees are highly interpretable. R Sptllllttlln% Cri;tierion G 1. Start with a single root node o Increase interpretability
. : : . . : , . Start with leaf node : : o
But learning optimal decision trees is hard! >. While (at most ¢ leaf nodes) 2. Split the node with probabﬂli}; Min cost-complexity pruning
Split leaf node [ using node function f pspir = o (1 + d) L . ,
. T e e Maximizing accuracy on training set typically
which maximizes “splitting criterion” GG , -
3. Select uniformly random splitting rule at leads to large trees
Key decision: Which node to split next and how? each node if split * Add tree size as a penalty term in training loss

4. Repeat step 2 for each new node
Cost-complexity:

ves \QO ES \\I‘O New parameterized family, («, 3)-Tsallis entropy
p Stochastic search —
Screen Do Screen Do TSALLIS P .— C - o R(X,y) (T) K(X,y) (T) + a|leaves(T)|
lungs nothing — lungs nothing Jop (P) = a— 1 L= Zp ¢ 1. T° = initial skeleton with random rules ac- 5 .
i=1 dine to Pr Theorem. O(logt/e“) dataset samples are suffi-
- *mg N e e ; cient to learn near-optimal a.
Several heuristic approaches are known for train- o gISALLIS —— Gini impurity 2. T « obtained by small modification to 7'
ino decision trees 21 3. T"t1 = T* with probability q(T*,T*) based |
& ) TSALLIS . . . i+1 i . Loss vs complexity parameter
® 911 < Entropy on Dirichlet posterior, T*"! = T" otherwise 0.30 - S
. . ﬂSt_CEHC'EF
e How to select the best heuristic? o QESS’LLIS . Kearns-Mansour criterion | ? Y 035 _:_ ::e
e How much data is needed to learn provably ’ Question: How fo set hyperparameters o, ¢. E ~e— banknote
good decision trees? Theorem. We can learn to tune («, () using g "%
O (t 10%2|F It) problem samples. Insight Analyze the accuracy as a function of hy- Bois{ ¢° ’
P P : perparameters for fixed random bits; 8 !
roof insight. Analyse accuracy as a function of , , , , , E 010
. . , piecewise constant with exponential boundaries 5
. . . , (c, B) on a fixed instance (X, y); N 3
® Data-driven algorithm design [1,2] family of algo- and at most t“ N“ pieces over N problem samples. ¥ 005

Induction over top-down rounds, bounding the
number of distinct behaviors in each round;

rithms given by real-valued hyperparameters.
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* Goal: learn hyperparameters from a collection Over t rounds, O(|F|*t?*) distinct behaviors, Theorem. O(logt/e?) dataset samples are suffi- 0.00 0.02 0.04 0.06 0.08 0.10
of multiple datasets coming from the same do- | which implies pseudo-dimension is O (¢ log | F|t). cient to learn near-optimal parameters o, ¢. !
main (Xla y1)7 SO (XN7 yN)
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e Domain <= fixed, unknown distribution D. 05
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Formally, given a bound on the maximum tree e Moditied objective: | Accuracy vs inexplainability
size t, a finite family F of node functions, : 1}%
gr R(x,)(T) = (x,y)(T) + nlleaves(T)
How many samples N are enough to learn a near- e
optimal hyperparameter A? (\* is optimal) 26 e Unlike min cost-complexity pruning, also modity test loss
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a : : ,, e 7 controls the accuracy-interpretability trade-oft

X, ~D ) (A) = Lix ) (A)] < e

e Tune splitting/pruning hyperparameters simultaneously to

Different («, 5) work best for different datasets. maximize the modified objective
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splitting criteria encompassing known ones. ing when building a decision tree.




