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DECISION TREES
Interpretability of model predictions is a major
challenge in modern machine learning!

• Decision trees are highly interpretable.

• But learning optimal decision trees is hard!

Several heuristic approaches are known for train-
ing decision trees.

• How to select the best heuristic?

• How much data is needed to learn provably
good decision trees?

NEW LEARNING PERSPECTIVE
• Data-driven algorithm design [1,2] family of algo-

rithms given by real-valued hyperparameters.

• Goal: learn hyperparameters from a collection
of multiple datasets coming from the same do-
main (X1, y1), . . . , (XN , yN ).

• Domain ⇐⇒ fixed, unknown distribution D.

Formally, given a bound on the maximum tree
size t, a finite family F of node functions,

How many samples N are enough to learn a near-
optimal hyperparameter λ̂? (λ∗ is optimal)

E(X,y)∼D[ℓ(X,y)(λ̂)− ℓ(X,y)(λ
∗)] ≤ ϵ
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CONCLUSION

• We design a new parameterized family of
splitting criteria encompassing known ones.

• Sample complexity bounds for learning

splitting criterion, Bayesian prior and prun-
ing when building a decision tree.

• Optimize both accuracy and interpretability.

SPLITTING CRITERION

Top-down learning

Inputs: Node function class F , tree size t,
splitting criterion G

1. Start with leaf node
2. While (at most t leaf nodes)

Split leaf node l using node function f
which maximizes “splitting criterion” G

Key decision: Which node to split next and how?

New parameterized family, (α, β)-Tsallis entropy
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• gTSALLIS
2,1 ⇐⇒ Gini impurity

• gTSALLIS
1,1 ⇐⇒ Entropy

• gTSALLIS
1
2 ,2

⇐⇒ Kearns-Mansour criterion

Theorem. We can learn to tune (α, β) using
O
(

t log |F|t
ϵ2

)
problem samples.

Proof insight. Analyse accuracy as a function of
(α, β) on a fixed instance (X, y);
Induction over top-down rounds, bounding the
number of distinct behaviors in each round;
Over t rounds, Õ(|F|2tt2t) distinct behaviors,
which implies pseudo-dimension is O (t log |F|t).

Different (α, β) work best for different datasets.

BAYESIAN TREES
Two-phase randomized algorithm.

Prior

1. Start with a single root node
2. Split the node with probability

pSPLIT = σ(1 + d)−ϕ

3. Select uniformly random splitting rule at
each node if split
4. Repeat step 2 for each new node

Stochastic search

1. T 0 = initial skeleton with random rules ac-
cording to Prior
2. T ∗ ← obtained by small modification to T i

3. T i+1 = T ∗ with probability q(T i, T ∗) based
on Dirichlet posterior, T i+1 = T i otherwise

Question: How to set hyperparameters σ, ϕ?

Insight Analyze the accuracy as a function of hy-
perparameters for fixed random bits;
piecewise constant with exponential boundaries
and at most t2N2 pieces over N problem samples.

Theorem. O(log t/ϵ2) dataset samples are suffi-
cient to learn near-optimal parameters σ, ϕ.

INTERPRETABILITY
Modified objective:

R(X,y)(T ) = ℓ(X,y)(T ) + η|leaves(T )|

• Unlike min cost-complexity pruning, also modify test loss

• η controls the accuracy-interpretability trade-off

• Tune splitting/pruning hyperparameters simultaneously to
maximize the modified objective

PRUNING
Post-processing to

• Reduce overfitting

• Increase interpretability

Min cost-complexity pruning

• Maximizing accuracy on training set typically
leads to large trees

• Add tree size as a penalty term in training loss

Cost-complexity:

R(X,y)(T ) = ℓ(X,y)(T ) + α|leaves(T )|

Theorem. O(log t/ϵ2) dataset samples are suffi-
cient to learn near-optimal α.


