Maria-Florina Balcan, Dravyansh Sharma

Best Paper from Sister Conferences Track

DECISION TREES

Interpretability of model predictions is a major challenge in modern machine learning!

- Decision trees are highly interpretable.
- But learning optimal decision trees is hard!

Several heuristic approaches are known for training decision trees.

- How to select the best heuristic?
- How much data is needed to learn provably good decision trees?

New Learning Perspective

- Data-driven algorithm design [1,2] family of algorithms given by real-valued hyperparameters.
- Goal: learn hyperparameters from a collection of multiple datasets coming from the same domain $(X_1, y_1), \ldots, (X_N, y_N)$.
- Domain \iff fixed, unknown distribution \mathcal{D} .

Formally, given a bound on the maximum tree size t, a finite family \mathcal{F} of node functions,

How many samples N are enough to learn a near-optimal hyperparameter $\hat{\lambda}$? (λ^* is optimal)

$$\mathbb{E}_{(X,y)\sim\mathcal{D}}[\ell_{(X,y)}(\hat{\lambda}) - \ell_{(X,y)}(\lambda^*)] \le \epsilon$$

[1] M.-F. Balcan. *Data-Driven Algorithm Design* (book chapter). In *Beyond Worst Case Analysis of Algorithms*, Tim Roughgarden (Ed). Cambridge University Press, 2020.

[2] D. Sharma. Data-driven algorithm design and principled hyperparameter tuning in machine learning. PhD Thesis, 2024.

SPLITTING CRITERION

Top-down learning

Inputs: Node function class \mathcal{F} , tree size t, splitting criterion G

- 1. Start with leaf node
- 2. While (at most t leaf nodes)

 Split leaf node l using node function f which maximizes "splitting criterion" G

Key decision: Which node to split next and how?

New parameterized family, (α, β) -Tsallis entropy

$$g_{\alpha,\beta}^{\text{TSALLIS}}(P) := \frac{C}{\alpha - 1} \left(1 - \left(\sum_{i=1}^{c} p_i^{\alpha} \right)^{\beta} \right)$$

- $g_{2.1}^{\text{TSALLIS}} \iff \text{Gini impurity}$
- $g_{1,1}^{\text{TSALLIS}} \iff \text{Entropy}$
- $g_{\frac{1}{2},2}^{\text{TSALLIS}} \iff$ Kearns-Mansour criterion

Theorem. We can learn to tune (α, β) using $O\left(\frac{t \log |\mathcal{F}|t}{\epsilon^2}\right)$ problem samples.

Proof insight. Analyse accuracy as a function of (α, β) on a fixed instance (X, y);

Induction over top-down rounds, bounding the number of distinct behaviors in each round;

Over t rounds $\tilde{O}(|T|^2t t^2t)$ distinct behaviors

Over t rounds, $\tilde{O}(|\mathcal{F}|^{2t}t^{2t})$ distinct behaviors, which implies pseudo-dimension is $O(t \log |\mathcal{F}|t)$.

Different (α, β) work best for different datasets.

BAYESIAN TREES

Two-phase randomized algorithm.

Prior

- 1. Start with a single root node
- 2. Split the node with probability

$$p_{\text{SPLIT}} = \sigma (1+d)^{-\phi}$$

- 3. Select uniformly random splitting rule at each node if split
- 4. Repeat step 2 for each new node

Stochastic search

- 1. T^0 = initial skeleton with random rules according to Prior
- 2. $T^* \leftarrow$ obtained by small modification to T^i
- 3. $T^{i+1} = T^*$ with probability $q(T^i, T^*)$ based on Dirichlet posterior, $T^{i+1} = T^i$ otherwise

Question: How to set hyperparameters σ , ϕ ?

Insight Analyze the accuracy as a function of hyperparameters for fixed random bits; piecewise constant with exponential boundaries and at most t^2N^2 pieces over N problem samples.

Theorem. $O(\log t/\epsilon^2)$ dataset samples are sufficient to learn near-optimal parameters σ, ϕ .

PRUNING

Post-processing to

- Reduce overfitting
- Increase interpretability

Min cost-complexity pruning

- Maximizing accuracy on training set typically leads to large trees
- Add tree size as a penalty term in training loss

Cost-complexity:

$$R_{(X,y)}(T) = \ell_{(X,y)}(T) + \alpha |\text{leaves}(T)|$$

Theorem. $O(\log t/\epsilon^2)$ dataset samples are sufficient to learn near-optimal α .

INTERPRETABILITY

Modified objective:

$$R_{(X,y)}(T) = \ell_{(X,y)}(T) + \eta |\text{leaves}(T)|$$

- Unlike min cost-complexity pruning, also modify test loss
- η controls the accuracy-interpretability trade-off
- Tune splitting/pruning hyperparameters simultaneously to maximize the modified objective

Conclusion

- We design a new parameterized family of splitting criteria encompassing known ones.
- Sample complexity bounds for learning
- splitting criterion, Bayesian prior and pruning when building a decision tree.
- Optimize both accuracy and interpretability.

READ AND DISCUSS!

Balcan and Sharma, Learning accurate and interpretable decision trees. UAI 2024.

