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HP tuning is a special case of algorithm selection in Machine Learning
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What is a hyperparameter?

Why so common in ML?

Hard problems + role of data

Linear

regression

Ridge/Lasso penalties

Logistic

regression

L1, L2 regularization 

penalties

Decision

Tree

splitting criterion, 

pruning cost, max depth

k-Nearest

neighbors

k, weights, metric, 

abstention threshold

Support Vector

Machines

C, kernel, gamma

Neural

Networks

activation function, 

learning schedule, …

HPs define a collection of 

algorithms for learning a 

predictor



HP tuning is important across ML

● Data prep + HP tuning take up most of the applied ML researcher hours

● Takes up to 90% of the compute

● Critical in high-stakes and large-scale applications
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Hyperparameter tuning and transfer

HP transfer is crucial today!

● Unavoidable in LLMs where each of the above is magnified multifold!



Algorithm design for machine learning

● Hyperparameter tuning is poorly understood and yet of critical importance

○ why? ML works on data
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Data Predictions

● Current practices require incredible amounts of compute and engineering efforts, and 

yet with no guarantees!

● Understanding how the performance actually varies with the hyperparameter is crucial for 

principled tuning

○ There is NO single best algorithm+hyperparameter!

○ Must tune/configure for the best performance on domain-specific data



❖ Introduction
❖ Major techniques used in practice

➢ Bayesian Optimization
➢ Bandit-based methods
➢ Case studies: NAS and LLMs

❖ Data-driven algorithm design
➢ Learning-theoretic guarantees

➢ Distributional learning
➢ Online learning

❖ Tuning core ML algorithms
➢ Linear regression, decision trees
➢ Semi-supervised learning, neural networks

❖ Conclusion
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Roadmap
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Hyperparameter tuning setup

● Tune hyperparameters such as learning rate, batch size, weight decay

● f(𝛼) = val_loss

● Baselines: grid search, random search

● Black box optimization (zeroth order optimization)

○ no gradient info; treat function as a “black box”

Hyperparam 1
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Grid search Random search
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Bayesian Optimization

● Gaussian Process:

○ a collection of (infinitely many) random variables that are jointly Gaussian.

○ a distribution over functions – models noisy evaluation of some f(𝛼).
○ given by a mean function m(𝛼) and covariance k(𝛼, 𝛼’).

E[f(𝛼)] = m(𝛼).
E[(f(𝛼) – m(𝛼))(f(𝛼’) – m(𝛼’))] = k(𝛼, 𝛼’). 

● Since all finite collections of function values are assumed 

jointly Gaussian, the conditional distribution of any new 

point given the observed points is also Gaussian,

i.e. posterior predictive mean and variance at 𝛼*, given 

observed points 𝛢 is
μ(𝛼*)  = K(𝛼*, 𝛢)K(𝛢, 𝛢)–1f(𝛢).
σ2(𝛼*) = K(𝛼*, 𝛼*) – K(𝛼*, 𝛢)K(𝛢, 𝛢)–1K(𝛢, 𝛼*). 

μ(𝛼*) 

𝛼*

σ2(𝛼*)

𝛢 = [𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5]

𝛼5
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Bayesian Optimization

Acquisition function

● Trade off exploration 

vs. exploitation

EI(𝛼)=E[max(0,fbest ​− f(𝛼))]

for i in {0, ..., n}:
// use GP to compute EI
select 𝛼* = max𝛼 EI(𝛼)
compute val_loss of 𝛼*

Bayesian optimization:



BO libraries: [Dragonfly: Kandasamy et al., JMLR 2020],

[SMAC3: Lindauer et al. JMLR 2022]
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BO has its own hyperparameters!

Assumption on the smoothness of the function f(𝛼) = val_loss

(without this assumption, convergence is slow)
[Berkenkamp, Schoellig, Krause JMLR 2019]

[Frazier, 2022]



Random search with adaptive early stopping

Each arm has a noisy non-stationary reward 

that eventually converges to a limiting value

1. Successive halving

2. Hyperband: multiple runs of successive 

halving, across different hyper-

hyperparameters
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Bandit-based approaches

[Jamieson, Talwalkar (AISTATS 2016)]
[Li, Jamieson, DeSalvo, Rostamizadeh, 
Talwalkar (JMLR 2018)]

Given sets of hyperparameters 𝛢
for i in {0, ..., 3}:

run(𝛼, 10 * 2i),  𝛼∊A
𝛢 := top_k(𝛢, 16 * 2-i)



BOHB (BO + Hyperband):
Run Hyperband, but replace the 
random selection of configurations at 
the beginning of each iteration by a 
model-based search
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Other approaches and speedups

[Falkner, Klein, Hutter, ICML 2018]

Learning curve extrapolation:

Speed up HPO algorithms by 

extrapolating partial learning curves

[Domhan, Springenberg, Hutter, IJCAI 2015]
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Case study: Neural Architecture Search

[Kandasamy, Neiswanger, Schneider, Póczos, Xing, NeurIPS 2018]

Define the search space as a DAG with architecture components 

(e.g. conv_3x3, conv_5x5, pool, fc)

● The search space is a critical decision [Li, Talwalkar, UAI 2019]
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Case study: Neural Architecture Search (NAS)

[Tan, Le, ICML 2019]

● NAS has been used to achieve SotA on 

imagenet seven times since 2017

● NAS has also been used to discover 

efficient architectures such as EfficientNet

[paperswithcode.com/sota/image-classification-on-imagenet, 2022]
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Large Language Models: Scaling Laws

● Scaling Laws for the ratio of tokens per parameter

○ Isoflop analysis: given a fixed compute budget, sweep over model sizes

○ Fit an empirical trend across small models -> scale up

[Kaplan et al, 2020], [Hoffmann et al, 2022]FLOPs ≈ 6 * (# params) * (# tokens)
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Large Language Models: selecting learning rate using muP

Maximum Update 

Parameterization (muP):

Parameterize the model 

such that the learning rate 

is same across all scales. 

Then tune LR once.

● Width-dependent LR

● Width-dependent 

weight initialization

● Width 

[Yang, Hu, ICML 2021], [Yang et al., NeurIPS 2021]

Traditional LR scaling law: muP LR scaling law:



Limitations of popular HPO approaches in practice

● Theoretical guarantees typically need strong assumptions

● Need to tune hyper-hyper-parameters

● Overtuning (val loss is a proxy for generalization)
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All approaches are black-box!! (agnostic to the structure of the function)

Practitioners rely heavily on empirical findings!

[Schneider, Bischl, Feurer, AutoML 2025]
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Machine Learning for Algorithm Design



Algorithms for solving combinatorial problems. E.g.,

• Clustering: organize an input set of items into natural groups. 

• Pricing: price a set of items to maximize revenue.

Design and Analysis of Algorithms

• Subset selection: output most valuable subset of items 

subject to capacity constraint. 

Algorithm:  (finite) sequence of precise step-by-step instructions to 

solve a well specified class of problems.



Algorithms for solving combinatorial problems. E.g.,

Many problems typically hard in classic frameworks.

• clustering, partitioning

• pricing, auction design

Design and Analysis of Algorithms

Classic

Approach

1. Algorithm hand-designed, stroke of genius. 

2. Worst-case analysis, one-problem instance.   

• subset selection



Machine Learning for Algorithm Design

Data-driven algo design: use learning & data for algo design.

Recent Work: Data driven algos with provable guarantees.

Interesting tools, with implications to Hyperparameter Tuning.

Classic Work: largely empirical 

AI, Computational Biology, Game Theory

•  often repeatedly solve instances of the same algo problem.

[Horvitz-Ruan-Gomes-Kautz-Selman-Chickering, 2001]

[Xu-Hutter-Hoos-LeytonBrown, 2008]

[DeBlasio-Kececioglu, 2018]

[Likhodedov and Sandholm, 2004]

“Data-driven algorithm design”, M.F. Balcan, chapter in “Beyond the Worst-Case Analysis of Algorithms book, 2020. 

20252000



Algorithm Design as Distributional Learning
Data-driven algo design: directly learn an algorithm (from a parametric family of 

algos) that does well on instances from a given domain.

Large family 𝐅 of algorithms

Sample of typical inputs

MST

Greedy 

Dynamic Programming

…

+

+ Farthest Location

Clustering:

Input 1 Input 2 Input m

Knapsack:

Pricing:

Input 1

𝑣1 C     

𝑣1 M       

𝑣1 C&M 

…

𝑣𝑛 C

𝑣𝑛 M      

𝑣𝑛 C&M

Input m

𝑣1 C  

𝑣1 M      

𝑣1 C&M 

…

𝑣𝑛 C   

𝑣𝑛 M      

𝑣𝑛 C&M

…

…

…(v1s1), … , (vnsn), C (v1s1), … , (vnsn), C 



dim 𝐅  (e.g. pseudo-dimension): ability of fns in 𝐅 to fit complex patterns 

m = O dim 𝐅 /ϵ2  instances suffice for uniform convergence.

Overfitting
𝑦

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 

Training set

Tools from statistical learning theory

Algorithm Design as Distributional Learning

Sample Complexity: How large should training set be to guarantee that algos 

that do well over training set do well on new instances?



Online Algorithm Selection

Run algorithm 

on input:

Get Input:

Select Algorithm: A1 

Get cost: cost1

A2

cost2

… Am

costm

Online alg. selection: instances arrive online, one by one

Guarantee: no regret - our cumulative performance comparable to performance of 

best parameter setting (algorithm) in hindsight.

Input 1:
Gucci Tennis

Soccer

Baseball

Lacoste

Dior

Input 1:
Gucci Tennis

Soccer

Baseball

Lacoste

Dior

Input 2:

Dublin ACL

COLT

ICML

Pittsburgh

Bucharest

ACL

Bucharest

Dublin

Input 2:

COLT

ICML

Pittsburgh

Piano

Flute

Input m:

…
Tennis

Soccer

Football

Guitar

Input m:

…
Flute Tennis

Soccer

Football

Guitar

Piano



Provable Data-Driven Algo Design, Challenges

Learnability of more complex objects.

Key new techniques: structure of dual function classes.

Key Challenge: much more volatile losses.

case studies and general principles.Recent  work:



Data-driven algorithm design: Problem Setup

• Fix an algorithmic pb (e.g., subset selection or clustering).

Let Alg be a  family of algos, parameterized by set P ⊆ Rd;  Aα the algo in 

Alg  parametrized by α ∈ P.

• Let Π be the set of problem instances for this problem.

• Fix  a utility function u: Π × P → [0, H] where u(I, α) measures the performance 

of algo Aα on problem instance I.

[Gupta-Roughgarden, ITCS’16 &SICOMP’17]

• uα: Π → [0, H] induced by Aα, where  uα I = u(I, α) .

[ Balcan, book chapter, 2020]. 



(can measure uα I  of each algo Aα ∈ Alg on each input Ii)

• Specific domain: unknown input distribution D over Π. 

• Learning algo uses m i.i.d. samples I1, I2, … Im ~D to find an algo Aα ∈ Alg for future 

inputs from D.

• Goal: output an algo of Alg that performs almost as well as the optimal algorithm 

Aα∗ ∈ Alg for D that maximizes

EI~D[uα (I)] over Aα ∈ Alg.

• Typical approach: pick ෡𝐀  that does well over the sample.

Sample Complexity: How large should training set be to guarantee that algos that do 

well over training set do well on new instances?

Data-driven algorithm design: Problem Setup
[Gupta-Roughgarden, ITCS’16 &SICOMP’17] [ Balcan, book chapter, 2020]. 



Data-driven algorithm design. Example: Knapsack Problem

Input: An instance I consists of n items (each item i has a value vi and a 

size si), and knapsack capacity C. 

Alg : greedy algos parametrized by P =  R. 

Output: select most valuable subset of items that fits.  Find subset V to 

maximize σi∈V vi subject to σi∈V si ≤ C.

u(I, α) = value of items chosen by the algo param. by α on I.

For α ∈ P, algo Aα:

• Set score of item i to be  vi/si
α.

• In decreasing order of score, we add each item to the knapsack if there is 

enough capacity left.

[Gupta-Roughgarden, ITCS’16 &SICOMP’17]



Data-driven algorithm design. Example: Partitioning Problems

Alg : greedy algos parametrized by P =  R. 

u(I, α) = clustering objective chosen by the algo α on I.

Input: set of objects S, d.

k-means clustering: min σp min
i

d2(p, ci) 

k-center (facility location): min max radius.

Output: centers {c1, c2, … , ck}

1. Greedy linkage-based, get hierarchy. 

2. Fixed algo (e.g., DP or last k-merges) to select a good pruning.

E.g., distα A, B = 1 − α SL + α max
x∈A,x′∈B

d(x, x′) soccer

sports fashion

Guccitennis Lacoste 

All topics

[Balcan-Nagarajan-Vitercik-White, COLT’17] [Balcan-Dick-Lang, ICLR’20]



Uniform Convergence

m = O dim 𝐅 /ϵ2  suffices so that  for any distribution D over Π, with prob. 

at least 1 − δ over the draw I1, … , Im ~D, for all algos Aα∈ Alg,

𝔼I~D uα (I) −
1

m
෍

i=1

m 

uα (Ii) ≤ ϵ

Uniform convergence: for any algo in Alg, average performance over samples 

“close” to its expected performance.

• Imply that ෡𝐀  that does best over the sample has high expected performance.

Learning theoretic notion of dimension, e.g., pseudo-
dimension

Theorem



dim 𝐅  (e.g. pseudo-dimension): ability of fns in 𝐅 to fit complex patterns 

m = O dim 𝐅 /ϵ2  instances suffice for uniform convergence.

Tools from statistical learning theory

Algorithm Design as Distributional Learning

Sample Complexity: How large should training set be to guarantee that algos that 

do well over training set do well on new instances?

Overfitting
𝑦

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 

Training set



Theorem (informally)

Technique for analyzing dim( u𝛂 ⋅ ∶  param 𝛂 ) that takes advantage of the 

structure of dual class uI ⋅ : instances 𝐈 .

General Sample Complexity via Dual Classes

[Balcan-DeBlasio-Kingsford-Dick-Sandholm-Vitercik, STOC 2021&JACM 2024]

Given u: Π × P → [0, H] , u(I, α) = performance of Aα on I.

• uα: Π → [0, H] induced by Aα, uα I = u(I, α) .

• uI: P → [0, H] induced by I, uI α = u(I, α) .

uI: instances 𝐈  dual class for of u𝛂 ⋅ ∶  param 𝛂 



General Sample Complexity via Dual Classes

Key motivation: can often show uI is structured. 

α ∈ ℝ

Critical points of the form
 log

vi
vj

log
si
sj

 , so O(n2) pieces.

Example: knapsack, greedy family Alg, uI piece-wise linear:

[Gupta-Roughgarden, ITCS’16 &SICOMP’17]

Theorem (informally)

Technique for analyzing dim( u𝛂 ⋅ ∶  param 𝛂 ) that takes advantage of the 

structure of dual class uI ⋅ : instances 𝐈 .

[Balcan-DeBlasio-Kingsford-Dick-Sandholm-Vitercik, STOC 2021&JACM 2024]



Example: clustering, parametrized-linkage, uI piece-wise linear

[Balcan-Nagarajan-Vitercik-White, COLT’17] [Balcan-Dick-Lang, ICLR’20]

1. Greedy linkage-based, get hierarchy. 

2. Fixed algo to select a good pruning.
soccer

sports fashion

Guccitennis Lacoste 

All topics

E.g., distα A, B = 1 − α SL + α max
x∈A,x′∈B

d(x, x′)

General Sample Complexity via Dual Classes

α ∈ ℝ

Roots of linear eqs where we merge one pair vs another pair of clusters.

Theorem (informally)

Technique for analyzing dim( u𝛂 ⋅ ∶  param 𝛂 ) that takes advantage of the 

structure of dual class uI ⋅ : instances 𝐈 .

[Balcan-DeBlasio-Kingsford-Dick-Sandholm-Vitercik, STOC 2021&JACM 2024]



General Sample Complexity via Dual Classes

𝑠

IQP 
objective 

value

[Balcan-Nagarajan-Vitercik-White, COLT 2017] 

SDP + s-linear rounding

α ∈ ℝ

Posted Pricing, Two-Part Tariffs, 

Parametrized VCG auctions, etc.

Price   M
Pr

ic
e

C

M

CC, M

[Balcan-Sandholm-Vitercik, EC’18]

Decision boundary where the buyer prefers one 

bundle over the other, is a hyperplane.

[Balcan-Beyhaghi, TMLR’24]

Key motivation: can often show uI is structured. 

Partitioning Pbs via IQPs

Theorem (informally)

Technique for analyzing dim( u𝛂 ⋅ ∶  param 𝛂 ) that takes advantage of the 

structure of dual class uI ⋅ : instances 𝐈 .

[Balcan-DeBlasio-Kingsford-Dick-Sandholm-Vitercik, STOC 2021&JACM 2024]



VC-dimension (for binary valued classes)

VC-dimension of a function class H is the cardinality of the largest set S that 

can be labeled in all possible ways 2|S|  by H.

[If arbitrarily large finite sets can be shattered by H, then VCdim(H) = ∞]

E.g., H= linear separators in 𝐑𝟐:

VCdim H ≥ 3

VCdim(H) = 3

VCdim H < 4

E.g., H= linear separators in 𝐑𝐝: VCdim(H) = d+1



The pseudo-dimension [Pollard 1984] of a function class F is the cardinality of 

the largest set S = {x1, … , xm} and thresholds y1, … , ym s.t. all 2m above/below 

patterns can be achieved by functions f ∈ F.

• E.g., m = 2, there should exist f1 ∈ F s.t. f1 x1 < y1, f1 x2 < y2; f2 ∈ F s.t. f2 x1 > y1,
f2 x2 < y2; f3 ∈ F s.t. f3 x1 < y1, f3 x2 > y2, and f4 ∈ F s.t. f4 x1 > y1, f4 x2 > y2

Pseudo-dimension (for real valued classes)

Equivalently, the pseudo-dimension of F is the VC dim of the class of “below-

the-graph” indicator functions Bf x, y = sgn f x − y : f ∈ F



Pseudo-dimension, Uniform Convergence

For any δ ∈ (0,1) and any distribution 𝒟 over 𝒳, with probability 1 − δ over the draw x1, … , xm ~𝒟m, for all 

functions f ∈ F,

𝔼x~𝒟 f x −
1

m
෍

i=1

m

f xi = O U
𝐏𝐝𝐢𝐦(𝓕)

m
+ U

log(1/δ)

m
,

where U is the maximum f(x) for any f ∈ F and x in the support of 𝒟.

Uniform convergence guarantees [Pollard‘84; Dudley ‘67]

The pseudo-dimension [Pollard 1984] of a function class F is the cardinality of 

the largest set S = {x1, … , xm} and thresholds y1, … , ym s.t. all 2m above/below 

patterns can be achieved by functions f ∈ F.



General Sample Complexity via Dual Classes

Theorem 

Suppose for each uI(α) there are ≤ N boundary fns f1, f2, … ∈ F s. t within each region 

defined by them, ∃ g ∈ G s.t. uI α = g(α). 

dF∗ = VCdim of dual of F, dG∗ =Pdim of dual of G.

[Balcan-DeBlasio-Kingsford-Dick-Sandholm-Vitercik, STOC 2021&JACM 2024]

dF∗ =VCdim (F∗)

dG∗ =Pdim(G∗)

f ∈ F

g ∈ G

Pdim uα I = ෩O dF∗ + dG∗ + dF∗ log N



• Fix D instances I1, … , ID and D thresholds z1, … , zD. Bound # sign patterns (uα I1 , … , uα ID ) ranging over 

all α.

Proof insights:

Equivalently, (uI1
α , … , uID

α ). 

• Use VCdim of F∗ , bound # of regions induced by uI1
α , … , uI𝐷 α  : eND dF∗ .

• On a region, exist gI1
, … , gID

 s.t.,(uI1
α , … , uID

α ) = (gI1
α , … , gID

α ), which equals 𝛼 𝑔𝐼1
, … , 𝛼 𝑔𝐼𝐷

. 

These are fns in dual class of G. Sauer’s lemma on G∗, bounds # of sign patterns in that region by eD dG∗ .  

• Combining, total of eND dF∗ eD dG∗ . Set to 2D and solve.

General Sample Complexity via Dual Classes

Theorem 

Suppose for each uI(α) there are ≤ N boundary fns f1, f2, … ∈ F s. t within each region 

defined by them, ∃ g ∈ G s.t. uI α = g(α). 

dF∗ = VCdim of dual of F, dG∗ =Pdim of dual of G.

[Balcan-DeBlasio-Kingsford-Dick-Sandholm-Vitercik, STOC 2021&JACM 2024]

Pdim uα I = ෩O dF∗ + dG∗ + dF∗ log N



• Optimal parameters vary across different distributions.

• Choosing the parameter can give large improvements to loss;  improvements over SL 

and CL by interpolating between them.

Different Algos Work in Different Settings

Cifar10 MNIST

Omniglot Rings and Discs

[Balcan-Dick-Lang, ICLR’20]



Goldberg-Jerrum (GJ) Framework

GJ (95) Procedure ΓI,z if

then else

then else
True False

𝐩𝟏
𝐈,𝐳(𝛂)

𝐪𝟏
𝐈,𝐳(𝛂)

≥ 𝟎

if if

if

𝐩𝟐
𝐈,𝐳(𝛂)

𝐪𝟐
𝐈,𝐳(𝛂)

≥ 𝟎 𝐩𝟑
𝐈,𝐳(𝛂)

𝐪𝟑
𝐈,𝐳(𝛂)

≥ 𝟎

𝐩𝚷
𝐈,𝐳(𝛂)

𝐪𝚷
𝐈,𝐳(𝛂)

≥ 𝟎

Theorem [Bartlett, Indyk, Wagner. COLT’22] Assume α ∈ Rn, i.e. each Aα ∈ Alg has n real param. 

For any I and z, there is a GJ procedure  ΓI,z that determines for all α if uI(α) ≥ z  by 

evaluating Π distinct predicates (ratios of polys) with max. degree Δ.   Then:        

Pdim uα I = O(n log(ΔΠ))



Theorem [Balcan, Ngyuen, Sharma, TMLR’25 ] Assume α ∈ Rn, i.e. each Aα ∈ Alg has n real param. 

For any instance I and threshold z, there is a Pfaffian GJ algorithm  ΓI,z that determines 

for all α if  uI(α) ≥ z  by evaluating Π distinct Pfaffian predicates with Pfaffian chain length 

q, degree Δ, and Pfaffian degree M. 

Pdim uα I = O n2q2 + nqln Δ + M + n ln Π

Goldberg-Jerrum (GJ) Framework

Theorem [Bartlett, Indyk, Wagner. COLT’22] Assume α ∈ Rn, i.e. each Aα ∈ Alg has n real param. 

For any I and z, there is a GJ procedure  ΓI,z that determines for all α if uI(α) ≥ z  by 

evaluating Π distinct predicates (ratios of polys) with max. degree Δ.   Then:        

Pdim uα I = O(n log(ΔΠ))



Online Algorithm Selection

Guarantee: no regret - cumulative performance of learner comparable to performance of 

best algorithm from the family in hindsight.

Challenge: loss functions volatile.
α ∈ ℝ

[Balcan-Dick-Vitercik, FOCS’18], [Balcan-Dick-Pedgen, UAI’20]

Few boundaries within any 

interval

Not dispersed

Many boundaries within interval

Dispersed

Our contribution: identify general properties (piecewise Lipschitz fns with dispersed 

discontinuities) sufficient for no regret guarantees.

Instances arrive online, one by one.



Full info: exponentially weighted forecaster [Cesa-Bianchi-Lugosi 2006]

No Regret  Guarantees:

pt 𝜶 ∝ exp λ ෍

s=1

t−1

us 𝜶

Disperse fns, regret ෩O Td fnc of problem) .

On each round t ∈ 1, … , T :

• Sample  𝜶t from distr. pt:

Dispersion, Sufficient Condition for No-Regret

Disperse

density of 𝛼 exponential in its 

performance so far

[Balcan-Dick-Vitercik, FOCS’18], [Balcan-Dick-Pedgen, UAI’20]



Key Questions 

• How do we tune algos, to achieve best performance for a given domain, 

with provable guarantees?

• Data driven algo design as distributional learning

• Data driven algo design as online learning

[Balcan-Dick-Vitercik, FOCS’18], 

Disperse fns, regret ෩O Td fnc of pb) .

[Balcan-Dick-Pegden, UAI’20], [Balcan-Sharma, NeurIPS 2021] 

• What are interesting tunable families of algos?

Suffices to show that dual class uI ⋅ : instances 𝐈  is structured.



Who designs good machine learning algorithms? 

• How do we tune machine learning algorithms with 

provable guarantees?

• What are interesting tunable families of algos?

• Often hand-designed, with tunable parameters.
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Given instance  

Regularized linear regression

L1 (LASSO):

L2 (Ridge):

[Tibshirani 96]

[Hoerl & Kennard 70]

β2 β2

β1β1

β*
β*

contours

m: number of examples
Xi*: regressor, p features
yi: regressand or dependent variable

Regularized linear regression

bad if m < p not sparse

(X, y) ∈ ℝm x p x ℝm

βL1 = argmin β ∈ ℝm x p ‖y – Xβ‖2 +λ‖β‖1

βL2 = argmin β ∈ ℝm x p ‖y – Xβ‖2 +λ‖β‖2
2



Given dataset

Regularized linear regression

Elastic net: [Zou & Hastie 05]

Q: How to set hyperparameter 𝛼 = (λ1, λ2) for given dataset?

A: Use a hold out dataset, a grid of parameter values, minimize sq-error on held-out set

(X, y)

(X1, y1) (X2, y2)

Find βEN for 

each λ1, λ2
(i) (j)

Find λ1, λ2

to minimize 

‖y2 – X2βEN‖2

(i) (j)

m: number of examples
Xi*: regressor, p features
yi: regressand or dependent variable

Regularized linear regression

Objective 

selection

βEN = argmin β ∈ ℝm x p ‖y – Xβ‖2 +λ1‖β‖1 + λ2‖β‖2
2

(X, y) ∈ ℝm x p x ℝm



n instances of the regression problem

mi ,mi’ ≤ m, pi ≤ p.

I1 I2 I3
…

Multiple instances

Ii = (X(i), y(i), Xv
(i), yv

(i)) ∈ ℝmi x p x ℝmi x ℝm’i x p x ℝm’i



n instances of the regression problem

mi ,mi’ ≤ m, pi ≤ p.

I1 I2 I3
…

loss(P) = 

fit on 

using predicted 

Multiple instances

Ii = (X(i), y(i), Xv
(i), yv

(i)) ∈ ℝmi x p x ℝmi x ℝm’i x p x ℝm’i



I1

I2

I3

.

Hyperparameter 

tuning algorithm

Instances 

(drawn from D)
Test instance 

(drawn from D)

I = 

(Xtrain, ytrain, Xval, yval)

λ

Fit β on Xtrain, ytrain

with reg. coeff. λ

Compute 

validation loss for 

β on  Xval, yval
..

Multiple instances



25

Elastic Net [Balcan, Khodak, Sharma and Talwalkar, NeurIPS’22, Balcan, Nguyen, Sharma, NeurIPS’23]

Example application: Tuning Elastic Net coefficients.

Input: Training data X, y and validation data X’, y’.
Goal: Tune λ, λ’ to minimize dual validation loss + L0 terms (AIC/BIC).

Challenge: sharp transition boundaries, due to L0 terms in AIC/BIC validation loss.

Lemma: The dual validation loss is piecewise decomposable in the λ, λ’ space with

– at most d3d algebraic boundaries of degree at most d,

– at most 3d distinct piece functions, each a rational function with degree at most 2d.

minw ||Xw – y||2 + λ||w||2 + λ’||w||1
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Theorem: Sample complexity of tuning λ, λ’ is O(d/ε2).          

Lemma: The dual validation loss is piecewise decomposable in the λ, λ’ space with

– at most d3d algebraic boundaries of degree at most d,

– at most 3d distinct piece functions, each a rational function with degree at most 2d.

Proof sketch:

1. Elastic net is equivalent to a lasso for some modified 
datasets X’,y’ that depend on the ridge coefficient.

2. Lasso has a piecewise linear solution in terms of the L1 

penalty with known conditions for critical points.
3. 1+2 gives polynomial boundary functions and rational 

piece functions in terms of both the coefficients.

Elastic Net [Balcan, Khodak, Sharma and Talwalkar, NeurIPS’22, Balcan, Nguyen, Sharma, NeurIPS’23]



Trees for classification:

- Each internal node ⇔ Splitting rule

- Each leaf node ⇔ Single Class

Interpretable ML models

- axis-parallel decision boundaries

- Neural nets are hard to interpret

Smoke

?

Age 

> 30 

Age 

> 50  

YES NO

YES YES NONO

Screen 

lungs

Do 

nothing

Screen 

lungs

Do 

nothing

Hard to learn optimal trees, but several useful heuristics!

Decision Trees



Hardness of DT learning

- NP-complete. [Laurent and Rivest (1976)]

- Superconstant Inapproximability of Decision Tree Learning. 

[Koch et al. COLT 2024] [Koch and Strassle FOCS 2023, FOCS 2024]

Faster optimal decision trees (speed up the exp time branch-and-bound algorithm)

- [Hu et al. NeurIPS 2019]

- [McTavish et al. AAAI 2022]

- [Babbar et al. ICML 2025] (combines greedy with branch-and-bound)

Learning optimal decision trees is hard!

Alternative: data-driven formulation, 
instances I : labeled datasets, utility u(I, α) : avg. acc. on instance I



Top-down decision tree learning

Inputs: Node function class    , tree size t,

splitting criterion G

● Start with leaf node

Splitting criterion



Top-down decision tree learning

Inputs: Node function class    , tree size t,

splitting criterion G

● Start with leaf node

● While at most t leaf nodes
○ Split leaf node l using node function f

which maximizes “splitting criterion”

Splitting criterion



Top-down decision tree learning

Inputs: Node function class    , tree size t,

splitting criterion G

● Start with leaf node

● While at most t leaf nodes
○ Split leaf node l using node function f

which maximizes “splitting criterion”

Smoke

?

YES NO

Screen 

lungs

Do 

nothing

Splitting criterion

= {Smoke, Age >30, Age >50}



Top-down decision tree learning

Inputs: Node function class    , tree size t,

splitting criterion G

● Start with leaf node

● While at most t leaf nodes
○ Split leaf node l using node function f

which maximizes “splitting criterion”

Smoke

?

YES NO

Screen 

lungs

Age 

> 50  

YES

Screen 

lungs

NO

Do 

nothing

Key decision: Which node to split next 

and how? ⇒ splitting criterion

= {Smoke, Age >30, Age >50}

Splitting criterion



Top-down decision tree learning

Inputs: Node function class    , tree size t,

splitting criterion G

Splitting criterion (a greedy approach)

Overall algorithm: Greedy approach to growing a decision tree top-

down (from the root to leaves by repeatedly replacing an existing leaf 

with an internal node based on a “splitting criterion”).

Algorithm family: interpolation of popular splitting criteria.

F : binary functions for labeling internal nodes: features → {left, right}

G: uses how the current tree partitions the data into different classes to 
determine which node to split next and using with function in F

w(l): number of datapoints that map to leaf l
pi(l): fraction of them labeled i



Splitting criterion



Empirical research suggests different criteria work best on different data [Mingers 1989] 

● Entropy criterion (CART)

● Gini impurity (ID3)

● Kearns Mansour 96

(α, β)-Tsallis entropy

A single criterion which interpolates all three!

Splitting criterion

Family of top-down DT learning algorithms

[Balcan and Sharma (UAI 2024)]



Gini impurity

KM96

Entropy

Theorem: We can learn to tune (α, β) using.                    problem samples.  

Splitting criterion [Balcan and Sharma (UAI 2024)]



Theorem: We can learn to tune (α, β) using problem samples.  

Proof insights:
● Uses dual function (accuracy as a function of (α, β) on a fixed 

instance (X, y)) analysis

○ Dual function is piecewise-constant with boundaries given by 
exponential equations in (α, β): 

● Induction over top-down rounds, bounding the number of distinct 

behaviors (which node is split and how) in each round
● Over t rounds, Õ(|F |2tt2t) distinct behaviors, which implies pseudo-

dimension is O(t log |F |t).

Splitting criterion [Balcan and Sharma (UAI 2024)]



Splitting-criterion in XGBOOST [Chen and Guestrin (2016)]:

- Across all nodes of all trees in the ensemble, split the one that maximizes a 

score based on first and second order gradients

Regularized objective over a collection of K trees (size at most t),
L({Ti}, D) = l({Ti}, D) + ½ λ ∑k ||weights of leaves in Tk||

2

Gradient-boosted decision trees

State-of-the-art approach for tabular datasets!
[McElfresh et al. (NeurIPS 2023), Jayawardhana et al. (2025)]

Key idea: show piecewise-constant dual with polynomial boundaries

[Balcan and Sharma (ArXiv 2025)]



Splitting-criterion in XGBOOST [Chen and Guestrin (2016)]:

- Across all nodes of all trees in the ensemble, split the one that maximizes a 

score based on first and second order gradients

Regularized objective over a collection of K trees (size at most t),
L({Ti}, D) = l({Ti}, D) + ½ λ ∑k ||weights of leaves in Tk||

2

Gradient-boosted decision trees

There are at most tK|F | different candidate splits, or at most t2K2|F |2 pairs
Also over the course of XGBOOST, we have at most tK splits.

⇒ Computable using a GJ algorithm with at most (t2K2|F |2)tK predicates (degree 6)

⇒ Pdim(U) = O(tK log(tK|F |))

[Balcan and Sharma (ArXiv 2025)]
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★ Repeated problems e.g. emails on an email server, spam vs. non-spam

Day 1 Day 2 Day 3

[Balcan and Sharma (NeurIPS 2021)]
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Goal: learn how to connect points using a graph s.t. a (hard or soft) min-cut yields accurate predictions

Example: Semi-Supervised Learning



★ Graph edges are set using some kernel with hyperparameters

○ Polynomial kernel: (〈f(u), f(v)〉 + 𝛼)d

○ RBF kernel: exp(–d(u, v)2/𝜎2)
★ Instances I: partially labeled datasets; Utility: average accuracy of graph SSL

Piecewise-constant dual function with boundaries given by poly/exp equations

Day 1 Day 2 Day 3

[Balcan and Sharma (NeurIPS 2021)]
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Example: Semi-Supervised Learning



Day 1 Day 2 Day 3

[Balcan and Sharma (NeurIPS 2021)]
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Goal: learn how to connect points using a graph s.t. a (hard or soft) min-cut yields accurate predictions

○ statistical learning: tight upper+lower bounds on learning-theoretic complexity

○ online learning: no regret by showing critical points are dispersed; primal-dual 

algorithm for computing pieces exactly; 

○ faster approx pieces using conjugate gradient method [Sharma and Jones, UAI 2023]

Example: Semi-Supervised Learning
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Refined GJ Framework [Bartlett, Indyk, Wagner, COLT’22]

Theorem: Sample complexity of tuning IVY is O(mn/ε2).          

Example application: Low-rank approximation.

Inst, I: Given a sparse matrix                   with                  , target rank k < n.

Goal: Sparse matrix     with rank k that minimizes  (approximates A well).

Exact algorithm based on SVD (singular value decomposition) is inefficient!

Faster algorithm IVY [Indyk, Vakilian, Yuan ’19] is family of parameterized heuristics 

uses a m x n auxiliary matrix (runtime nearly linear in #non-zero entries!).



Low-rank approximation [Bartlett, Indyk, Wagner, COLT 2022]

Regularizing linear (Elastic Net) and logistic regression [BKST NeurIPS 2022, BNS NeurIPS 

2023, BGS 2025]

Simulated Annealing [Blum, Dan, Seddighin, AISTATS 2021]

Learning to branch and cut [Balcan, Dick, Sandholm, Vitercik, ICML 2018, JACM 2024]

Clustering (both k-center and hierarchical) [BNVW COLT 2017, BDW NeurIPS 2018, BDL ICLR 2020]

Gradient descent [Gupta and Roughgarden, ITCS 2016]

Integer and Linear Programming [Balcan et al., Khodak et al., Cheng and Basu, Sakaue and Oki (2024)]

45

Applications [ML, stats, optimization]



Knapsack, Maximum Weighted Independent Set [Gupta and Roughgarden, ITCS 2016, Balcan et 

al., FOCS 2018, Sun et al. 2022]

Max cut, Max 2-SAT [Balcan et al., COLT 2017]

Dynamic Programming, Sequence Alignment [Balcan et al., COLT 2017, STOC 2021, NeurIPS 2024]

Mechanism and game design [Balcan et al., EC18, NeurIPS 24, Jin et al. NeurIPS 24, Dütting et al. EC 2025]

Energy and climate science [Mathioudaki et al., 2023, Bostandoost et al. 2024]
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More applications [CS theory, Comp bio, Mech design, Energy …]



○ Parametric ReLU activation function

● Hyperparameter space A = [αmin, αmax] ⊂ ℝ (hyperparameter α) 

● Model parameter space W ⊂ ℝ (parameters/weights w)

Tuning deep networks: parameters and hyperparameters

*inspired by DARTS approach for Neural Architecture Search [Liu et al. ICLR’19]
47

fixed during training

updated during training

● Example (learning activation functions):

○ Consider a DNN τα,w with model weights w = (w1, …, wL)

○ More generally, one can interpolate* any activation functions

σ(z) = α o1(z) + (1 – α) o2(z)
where  o1, o2 are common activation functions, α is interpolation hyperparameter
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Model vs optimization hyperparameters

“Model” or “architectural” 

hyperparameters

“Optimization” 

hyperparameters

Impact learned weights w YES YES

Are part of: learned deep network τα,w optimization algorithm

Examples activation function 

hyperparameters, kernel 
parameters

learning rate,

learning schedule,
momentum
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Tuning deep network hyperparameters

Sample complexity of data-driven tuning of model hyperparameters (e.g. 

activation fns, GNN kernels) with p/w poly parameter-dependent dual fn

u*x(α) := uα(x) = supw fx(α, w)
new techniques to bound discontinuities and 

oscillations of dual

Poly surface depicting parameter-dependent 

dual fx(α, w) and piecewise structure of dual 

Instances I: labeled datasets; utility: avg acc

[Balcan, Nguyen, Sharma, 2025]



Learning the interpolated activation function

● DNN τα,w with L layers

● Layer i: Wi params (total W), ki nodes (total k)

● σ(z) = α o1(z) + (1 – α) o2(z) , where o1, o2 piecewise poly. 

with max degree Δ, p breakpoints 

● T samples (not assumed iid) in each problem instance                      

50



Learning the interpolated activation function

51

For the activation function interpolation:

Pdim(U) = O(L2W log Δ + LW log(Tpk))
Application:

Theorem (informal): Pdim(U) = O(log M + d log(ΔN)), where

M is the number of connected components

N is the number of boundaries

d is the dimension of w

Δ is the maximum polynomial degree

Open Q: Improve?

[Balcan, Nguyen, Sharma, 2025]



Gradient descent algorithm: Instance is (x, f), loss = num steps till convergence.

Inputs: initial point x, iterations H, threshold θ. Hyperparameter: learning rate η

Output: xi
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Tuning learning rate in gradient descent

Prior work by Gupta and Roughgarden (2016):

Assumes: f is convex and smooth

Sample complexity of tuning learning rate is O(H3/ε2)

We get O(H3/ε2) sample complexity even for 

non-convex non-smooth functions in deep 

networks! Open Q: Improve?

[Sharma, 2025]



Learning from small-samples

53

Can we figure out how to find the good hyperparameters for larger datasets/models based 

on learning good hyperparameters for smaller datasets/models? 

[Chatziafratis, Karmarkar, Li and Vitercik, 2025] give some initial answers for algorithm selection 

in clustering

Open Q: 

Neural Networks? 

LLMs scaling laws?



Algorithms with Predictions
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A new approach to designing algorithms, with predictions from machine learning
• Clustering [Ergun et al. ICLR 2022, Silwal et al. ICLR 2023, Braverman et al. arXiv 2025]

• Graph algorithms [Dinitz et al. 2021, Chen et al. ICML 2022, Aamand et al. arXiv 2025]

• Many, many more [350+ recent papers https://algorithms-with-predictions.github.io/]

Open Q: 

Learning-augmented 

hyperparameter tuning?

Hot research topic, but how do we actually learn the predictions? [Khodak et al. NeurIPS 2022]
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● Last ~20 years:

○ Explosive growth in powerful ML algorithms and their range of applications

○ New practically successful approaches to algorithm design

● Last 10 years:
○ Machine learning for algorithm design acquired solid foundations in 

learning theory

● Last 5 years:

○ Hyperparameter tuning is rapidly transforming from an art to a principled 
science

56

Conclusion



● Other applications to tuning important hyperparameters and algorithms

● Focus on statistical complexity                   computationally efficient methods?

● Making currently used approaches in practice more structure-aware

● Beyond the worst-case complexity: distribution-dependent bounds

● More challenging high-dimensional and distributed settings

○ E.g. extend our model hyperparameter tuning result to multiple 
hyperparameters

57

Next five years and beyond …



● For essentially all ML algorithms of interest, we will know how to provably 

configure hyperparameters

● ML can be used to solve its own problems of robustness, interpretability and 

trustworthiness

● Reliable and safe use of AI is going to be critical

○ We require more from generative AI

○ Data-driven approaches are promising candidates

● ML-designed algorithms for ML can unlock as-yet untapped potential

58

Next five years and beyond …
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Questions and transition to panel…

Linear

regression

Ridge/Lasso penalties

Logistic

regression

L1, L2 regularization 

penalties

Decision

Tree

splitting criterion, 

pruning cost, max depth

k-Nearest

neighbors

k, weights, metric, 

abstention threshold

Support Vector

Machines

C, kernel, gamma

Neural

Networks

activation function, 

learning schedule, …
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