. '-fh
S, Dec 2, 2025
2% "NEURAL -
227, INFORMATION San Diego
“]*}+PROCESSING

#) 24 SYSTEMS

New Frontiers of Hyperparameter Optimization:

Recent advances and open challenges in theory and practice

Dravyansh (Dravy) Sharma Maria-Florina Balcan Colin White
IDEAL, TTIC CMU Meta

What is a hyperparameter?

HP tuning is a special case of algorithm selection in Machine Learning

L2 Linear Ridge/Lasso penalties
4 regression HPs define a collection of
t Logistic L1, L2 regularization algorlthms for leammg a
regression penalties predictor
Decision splitting criterion, Why so common in ML?
Tree pruning cost, max depth Hard problems + role of data
R <><> k-Nearest Kk, weights, metric,
AA A° ° neighbors abstention threshold
° e o Support Vector C, kernel, gamma
° 0% o Machines
Neural activation function,
Networks learning schedule, ...

Hyperparameter tuning and transfer

HP tuning is important across ML

e Data prep + HP tuning take up most of the applied ML researcher hours
e Takes up to 90% of the compute
e Critical in high-stakes and large-scale applications

HP transfer is crucial today!

e Unavoidable in LLMs where each of the above is magnified multifold!

Algorithm design for machine learning

e Hyperparameter tuning is poorly understood and yet of critical importance

o why? ML works on data
MACHINE
@(HRN S
Data E— - ‘ ﬁ > Predictions

o There is NO single best algorithm+hyperparameter!
o Must tune/configure for the best performance on domain-specific data

e Current practices require incredible amounts of compute and engineering efforts, and
yet with no guarantees!

e Understanding how the performance actually varies with the hyperparameter is crucial for
principled tuning

Roadmap

Introduction

Major techniques used in practice
> Bayesian Optimization
> Bandit-based methods
> Case studies: NAS and LLMs
% Data-driven algorithm design
> Learning-theoretic guarantees
> Distributional learning
> Online learning

% Tuning core ML algorithms
> Linear regression, decision trees
> Semi-supervised learning, neural networks

» Conclusion

7/ 7
% O

Roadmap

% Introduction

* Major techniques used in practice
> Bayesian Optimization
> Bandit-based methods
> (Case studies: NAS and LLMs
% Data-driven algorithm design
> Learning-theoretic guarantees
> Distributional learning
> Online learning

% Tuning core ML algorithms
> Linear regression, decision trees
> Semi-supervised learning, neural networks

» Conclusion

Hyperparameter tuning setup

Tune hyperparameters such as learning rate, batch size, weight decay
f(a) = val_loss
Baselines: grid search, random search
Black box optimization (zeroth order optimization)
o no gradient info; treat function as a “black box”

% Grid search i Random search

L J
(q\l (q\]
= [e = | —T
o =
Q. e a,
3]) @
(e W o g:
- T
= e e o o o o ©

@
[]
(=] [] (<] (<) L] ° @
>

Hyperparam 1 Hyperparam 1

Bayesian Optimization

e Gaussian Process:
O

a collection of (infinitely many) random variables that are jointly Gaussian
. o

a distribution over functions — models noisy evaluation of some f(«).

o given by a mean function m(a) and covariance k(a, a’).

E[f(a) = m(a).
E[(fla) — m(a))(f(@') — m(a’))] = k(a, &’).

Igz(a*) |
e Since all finite collections of function values are assumed /\

jointly Gaussian, the conditional distribution of any new H(Of*) |
point given the observed points is also Gaussian,

I.e. posterior predictive mean and variance at a*, given
observed points A is

u(a®) =K(a*, A)K(4, AYIf(A).
o2(a*) = K(a*, a*) — K(a*, A)K(A, AYK(4, a*).

as
1
*
a

A=lay, ay, as, ay, as]

Bayesian Optimization

Acquisition function
e Trade off exploration
vs. exploitation

El(a)=E[max (0, fpes— f(a))]

Bayesian optimization:

for i in {©, ..., n}:
// use GP to compute EI
select a* =max, El(a)
compute val_loss of a”

Accuracy

1.2

1.0 1

0.8 1

0.6

0.4 1

0.2 1

0.0 1

-0.2

——- True objective (hidden)
—— GP mean
95% Cl
» Observed points

Hyperparameter value (x)

BO has its own hyperparameters!

0 50 100 0 50 100 0 50 100

[Frazier, 2022]

Assumption on the smoothness of the function f(a) = val_loss

(without this assumption, convergence is slow)
[Berkenkamp, Schoellig, Krause JMLR 2019]

BO libraries: [Dragonfly: Kandasamy et al., JMLR 2020],
[SMACS: Lindauer et al. JMLR 2022]

10

Bandit-based approaches

Random search with adaptive early stopping

Each arm has a noisy non-stationary reward
that eventually converges to a limiting value

1. Successive halving

Given sets of hyperparameters A
for i in {0, ..., 3}:

run(a, 10 * 2%), aeA

A := top_k(4, 16 * 2°1)

2. Hyperband: multiple runs of successive
halving, across different hyper-
hyperparameters

Loss

0.30

0.25

0.20

0.15 4

Q10|

0.05

0.00
o

10 2;11 30 40 50
Resources

[Jamieson, Talwalkar (AISTATS 2016))

[Li, Jamieson, DeSalvo, Rostamizadeh,

Talwalkar (JMLR 2018)]

11

Other approaches and speedups

BOHB (BO + Hyperband):

Run Hyperband, but replace the
random selection of configurations at
the beginning of each iteration by a
model-based search

[Falkner, Klein, Hutter, ICML 2018]

Learning curve extrapolation:
Speed up HPO algorithms by
extrapolating partial learning curves

[Domhan, Springenberg, Hutter, IJCAI 2015]

regret

107 g
== Random Search
-e- Bayesian Optimization
-4~ Hyperband
-o- BOHB
1072
107°

10} 10% 10° 10* 10° 10°
wall clock time [s]

- pow, &y = 0.07

— log log lincar Ay = 0.05
= — Hill, Ay = 0.02

T~ log power Ay = 0.02
— weighted comb. Ay = 0,001
— pow, Ay =-0.01

= MMF Ay = -0.02

— exP, &y = -0.04

—— Janoschek Ay = .0.04
- Weibyll Ay = -0,04

- ilog, Ay = -0.05

- dota

— vapor pressure 3y = 0.10 |

0 100 200 300 400
epochs

12

Case study: Neural Architecture Search

Define the search space as a DAG with architecture components
(e.g. conv_3x3, conv_5x5, pool, fc)
e The search space is a critical decision [Talwalkar, UAI 2019]

#% ool TI,
aLx 1]

5 g,) e i, 1] maspool,
HEINIE] RENILY ATLHIT]

| s Il oulin || e
'”'IH mu:u rsum |

sl
]

h-muz;

#1% conw] 87
Isroa A IIJJ[II JIJ‘IEI] l'l“l[l‘l

[Kandasamy, Neiswanger, Schneider, P6czos, Xing, NeurlPS 2018] 13

Case study: Neural Architecture Search (NAS)

.
Il

WIT-C/14 CoCa (finetuned)

TS

Abuchiat Frve Base + Fryp MiR

0

TOP 1 ACCURALY

013 014 2015 2016 2017 F018 2019 F030 2021 023 I023

Other models - State-of-the-art models

[paperswithcode.com/sota/image-classification-on-imagenet, 2022]

e NAS has been used to achieve SotA on
imagenet seven times since 2017
e NAS has also been used to discover

efficient architectures such as EfficientNet

[Tan, Le, ICML 2019] 14

Large Language Models: Scaling Laws

Training Loss
Pk Pk (Y] (Y] (71 [T
(X kS o w o LY

M
[=]

Scaling Laws for the ratio of tokens per parameter
o Isoflop analysis: given a fixed compute budget, sweep over model sizes
o Fit an empirical trend across small models -> scale up

;

8 .0.'
-."’.'

ity o

s lelg P

o el o

- Geld w

-8 le20

- 3020

-8 6220

-8 lezl

8- 362l

100M 300M 1B

Parameters

£l

68

Parameters

08

1T

1008 43q

10T

14T

1T

108

1B

100M

lﬂl]’

L]
o o~
L]
..
1“1']‘ lﬂ 1
FLOPs

FLOPs = 6 * (# params) * (# tokens)

1008 .

Takens
&

108 I*

18

10% T (2 10% 107! 10% 10%

FLOPs

[Kaplan et al, 2020], [Hoffmann et al, 2022]

15

Large Language Models: selecting learning rate using muP

Maximum Update
Parameterization (muP):

Parameterize the model 7.0
such that the learning rate ¢
IS same across all scales.

Then tune LR once. a
; 5.5
e Width-dependent LR € sy
e Width-dependent "24.5
weight initialization
e Width 40
3.5

Traditional LR scaling law: muP LR scaling law:

optimum stable ==

8192 optimum shifts
20 -18 -16 -14 -12 -10 -20 -18 -16 -14 -12 -10
log,LearningRate logzLearningRate

[Yang, Hu, ICML 2021], [Yang et al., NeurlPS 2021]

16

Limitations of popular HPO approaches in practice

e Theoretical guarantees typically need strong assumptions
e Need to tune hyper-hyper-parameters
e Overtuning (val loss is a proxy for generalization) [schneider, Bischl, Feurer, AutoML 2025]

Practitioners rely heavily on empirical findings!

All approaches are black-box!! (agnostic to the structure of the function)

17

Roadmap

% Introduction

% Major techniques used in practice
> Bayesian Optimization
> Bandit-based methods
> (Case studies: NAS and LLMs
s Data-driven algorithm design
> Learning-theoretic guarantees
> Distributional learning
> Online learning

% Tuning core ML algorithms

> Linear regression, decision trees
> Semi-supervised learning, neural networks

» Conclusion

18

Machine Learning for Algorithm Design

Design and Analysis of Algorithms

Algorithm: (finite) sequence of precise step-by-step instructions to
solve a well specified class of problems.

Algorithms for solving combinatorial problems. E.g.,

« Clustering: organize an input set of items into natural groups.

« Pricing: price a set of items to maximize revenue.

* Subset selection: output most valuable subset of items
subject to capacity constraint.

Design and Analysis of Algorithms

Algorithms for solving combinatorial problems. E.g.,

clustering, partitioning

pricing, auction design
subset selection

—

Classic 1. Algorithm hand-designed, stroke of genius.

Approach
2. Worst-case analysis, one-problem instance.

———

Many problems typically hard in classic frameworks.

Machine Learning for Algorithm Design

Data-driven algo design: use learning & data for algo design.

« often repeatedly solve instances of the same algo problem.

Classic Work: largely empirical

Al, Computational Biology, Game Theory

2000 2025

[Horvitz-Ruan-Gomes-Kautz-Selman-Chickering, 2001] [DeBlasio-Kececioglu, 2018]
[Xu-Hutter-Hoos-LeytonBrown, 2008] [Likhodedov and Sandholm, 2004]

Recent Work: Data driven algos with provable guarantees.

“Data-driven algorithm design”, M.F. Balcan, chapter in “Beyond the Worst-Case Analysis of Algorithms book, 2020.

Interesting tools, with implications to Hyperparameter Tuning.

Algorithm Design as Distributional Learning

Data-driven algo design: directly learn an algorithm (from a parametric family of
algos) that does well on instances from a given domain.

Large family F of algorithms

MST | +|Dynamic Programming

Greedy |+ | Farthest Location

Sample of typical inputs

Input 1 Input 2

Input m

Input 1 Input m
L v,(C) v, (C) 1,(C) v, (C)
Pricing: v, (M) | vt v,(M) N ()
v,(C&M) v, (C&M) v,(C&M) v, ([C&M)

Knapsack: | .5, .., (vas.),C (v151), -, (VaSn), C

Algorithm Design as Distributional Learning

Sample Complexity: How large should training set be to guarantee that algos
that do well over training set do well on new instances?

Tools from statistical learning theory

m = O(dim(F) /€?) instances suffice for uniform convergence.

dim(F) (e.g. pseudo-dimension): ability of fns in F to fit complex patterns

Overfitting Y W

X1 X2 X3 X4 X5 X6 X7
L J
| |

Training set

Online Algorithm Selection

Online alg. selection: instances arrive online, one by one

Select Algorithm: Aq A; - Ay
Input 1: Input 2: Input m:
Gucci Tennis Dublin ACL Flute Tennis
Get InpUt- Lacoste Soccer Pittsburgh COLT ... | Guitar Soccer
Dior Baseball Bucharest ICML Piano Football
Run algorithm Input 1: Input 2: Input m:
on input: Gucci ennis Dublin A Flute Tennis
Lacoste Soccer Pittsburgh ... || Guitar Soccer
Dior aseball Bucharest Piano ootball
Get cost: cost, cost, CoSt,,

Guarantee: no regret - our cumulative performance comparable to performance of
best parameter setting (algorithm) in hindsight.

Provable Data-Driven Algo Design, Challenges

Learnability of more complex objects.

Key Challenge: much more volatile losses.

Recent work: case studies and general principles.

Key new techniques: structure of dual function classes.

Data-driven algorithm design: Problem Setup

[Gupta-Roughgarden, ITCS'16 &SICOMP’17] [Balcan, book chapter, 2020].

* Fix an algorithmic pb (e.g., subset selection or clustering).

« Let II be the set of problem instances for this problem.

Let Alg be a family of algos, parameterized by set P € RY; A, the algo in
Alg parametrized by a € P.

« Fix a utility function u: I1 x P — [0, H] where u(l, o) measures the performance
of algo A, on problem instance 1.

* uy:Il - [0,H] induced by A, where u,(I) = u(l,).

Data-driven algorithm design: Problem Setup

[Gupta-Roughgarden, ITCS'16 &SICOMP’17] [Balcan, book chapter, 2020].
Specific domain: unknown input distribution D over II.

Learning algo uses m i.i.d. samples [, 1,, ...1,;, ~D to find an algo A, € Alg for future
inputs from D.

(can measure u,(I) of each algo A, € Alg on each input I;)

Goal: output an algo of Alg that performs almost as well as the optimal algorithm
A+ € Alg for D that maximizes

Ei-pluy (I)] over A, € Alg.

Typical approach: pick A that does well over the sample.

Sample Complexity: How large should training set be to guarantee that algos that do
well over training set do well on new instances?

Data-driven algorithm design. Example: Knapsack Problem
[Gupta-Roughgarden, ITCS'16 &SICOMP’17]

Input: An instance | consists of n items (each item i has a value v; and a
size s;), and knapsack capacity C.

Output: select most valuable subset of items that fits. Find subset V to
maximize).y v; subject to Y.;cy si < C.

Alg : greedy algos parametrized by P = R.
Fora € P, algo A,:

« Set score of item i to be v;/s{".

* In decreasing order of score, we add each item to the knapsack if there is
enough capacity left.

u(l, a) = value of items chosen by the algo param. by o on I.

Data-driven algorithm design. Example: Partitioning Problems
[Balcan-Nagarajan-Vitercik-White, COLT’17] [Balcan-Dick-Lang, ICLR’20]
Input: set of objects S, d.

Output: centers {c,,cy, ..., Cx}
k-means clustering: min ¥, min d*(p, ¢;)
1

k-center (facility location): min max radius.

Alg : greedy algos parametrized by P = R. ‘} :,

1. Greedy linkage-based, get hierarchy. , @
E.g., dist,(A,B) = (1 — a)SL+ a max d(x x") e @ @

x€EAx'eB

2. Fixed algo (e.g., DP or last k-merges) to select a good pruning.

u(l, a) = clustering objective chosen by the algo a on |.

Uniform Convergence

Uniform convergence: for any algo in Alg, average performance over samples
“close” to its expected performance.

* Imply that A that does best over the sample has high expected performance.

Learning theoretic notion of dimension, e.g., pseudo-
dimension

Theorem /
m = O/c—:z) suffices so that for any distribution D over II, with prob.
at least 1 — 6 over the draw {I,, ..., I,}~D, for all algos A, € Alg,

m

1
Er-plug (D] = —) ug (1)

=1

<E€

Algorithm Design as Distributional Learning

Sample Complexity: How large should training set be to guarantee that algos that
do well over training set do well on new instances?

Tools from statistical learning theory

m = O(dim(F) /€?) instances suffice for uniform convergence.

dim(F) (e.g. pseudo-dimension): ability of fns in F to fit complex patterns

Overfitting Y W

X1 X2 X3 X4 X5 X6 X7
L J
| |

Training set

General Sample Complexity via Dual Classes

Theorem (informa"y) [Balcan-DeBlasio-Kingsford-Dick-Sandholm-Vitercik, STOC 2021&JACM 2024]

Technique for analyzing dim({u,(-) : param a }) that takes advantage of the
structure of dual class {u;(-): instances I}.

Given u:II X P - [0, H] , u(l,) = performance of A, on 1.

* uy:I1 - [0,H] induced by A, u,(I) = u(,).
 u;:P - [0,H] induced by I, uj(a) = u(l, a) .

{u;:instances I} dual class for of{u,(:) : param « }

General Sample Complexity via Dual Classes

Theorem (informa"y) [Balcan-DeBlasio-Kingsford-Dick-Sandholm-Vitercik, STOC 2021&JACM 2024]

Technique for analyzing dim({u,(-) : param a }) that takes advantage of the
structure of dual class {u;(:): instances I}.

Key motivation: can often show u; is structured.

Example: knapsack, greedy family Alg, u; piece-wise linear:

[Gupta-Roughgarden, ITCS16 &SICOMP’17]

M

log(d
Critical points of the form o)

<
log(—‘)
S

, 80 O(n?) pieces.

General Sample Complexity via Dual Classes

Theorem (informa"y) [Balcan-DeBlasio-Kingsford-Dick-Sandholm-Vitercik, STOC 2021&JACM 2024]

Technique for analyzing dim({u,(-) : param a }) that takes advantage of the
structure of dual class {u;(-): instances I}.

Example: clustering, parametrized-linkage, u; piece-wise linear
[Balcan-Nagarajan-Vitercik-White, COLT’17] [Balcan-Dick-Lang, ICLR"20] @
1. Greedy linkage-based, get hierarchy.

E.g., disty(AB) = (1 - 0SL+«_max d(xx") (sports) Clashion)

S—)
2. Fixed algo to select a good pruning. '

Goceep o) \Coud @eos®

—_———

Roots of linear eqs where we merge one pair vs another pair of clusters.

General Sample Complexity via Dual Classes

Theorem (informa"y) [Balcan-DeBlasio-Kingsford-Dick-Sandholm-Vitercik, STOC 2021&JACM 2024]

Technique for analyzing dim({u,(-) : param a }) that takes advantage of the
structure of dual class {u;(:): instances I}.

Key motivation: can often show u; is structured.

Partitioning Pbs via IQPs Posted Pricing, Two-Part Tariffs,

SDP + s-linear rounding Parametrized VCG auctions, etc.

[Balcan-Sandholm-Vitercik, EC’18]
[Balcan-Nagarajan-Vitercik-White, COLT 2017]

IQP
objective
value
s

a€ER / Price [M\]

Decision boundary where the buyer prefers one
bundle over the other, is a hyperplane.

[Balcan-Beyhaghi, TMLR’24]

A

Price (C)

r\\\
cml G

v

VVC-dimension (for binary valued classes)

VVC-dimension of a function class H is the cardinality of the largest set S that
can be labeled in all possible ways 23! by H.

[If arbitrarily large finite sets can be shattered by H, then VCdim(H) = o]

E.g., H= linear separators in R%: VCdim(H) = 3

VCdim(H) > 3 VCdim(H) < 4
\ © / O o O
O O
/ @)

E.g., H= linear separators in RY: VCdim(H) = d+1

Pseudo-dimension (for real valued classes)

The pseudo-dimension [Pollard 1984] of a function class F is the cardinality of
the largest set S = {x4, ..., X} and thresholds y4, ...,y s.t. all 2™ above/below
patterns can be achieved by functions f € F.

E.g., m = 2, there should exist f; € Fs.t. f;(x;) <yy,f;(x,) <y, f, EFst f,(x1) > vy,
fo(x2) <yz fz EFst f3(x1) <yy,f3(x3) >y, and fy € Fsit f,(x1) >y, f4(x3) >y,

Equivalently, the pseudo-dimension of F is the VC dim of the class of “below-
the-graph” indicator functions {B¢(x,y) = sgn(f(x) —y) : f € F}

Pseudo-dimension, Uniform Convergence

The pseudo-dimension [Pollard 1984] of a function class F is the cardinality of
the largest set S = {x4, ..., X} and thresholds y4, ...,y s.t. all 2™ above/below
patterns can be achieved by functions f € F.

Uniform convergence guarantees [Pollard'84; Dudley ‘67]
For any 6 € (0,1) and any distribution D over X, with probability 1 — 6 over the draw {x4, ..., X, }~D™, for all

functions f € F,
Pdim(F log(1/6
:O<UJ m) og(/)))
m m

where U is the maximum f(x) for any f € F and x in the support of D.

1 m
Eyplf(O] = — " f(x)
i=1

General Sample Complexity via Dual Classes

Theorem [Balcan-DeBlasio-Kingsford-Dick-Sandholm-Vitercik, STOC 2021&JACM 2024]

Suppose for each u;(a) there are < N boundary fns f;,f,, ... € F s. t within each region
defined by them, 3 g € G s.t. y;(a) = g(a).

Pdim({u,(D)}) = O((dp + dg-) + dg- logN)
dg+ = VCdim of dual of F, dg+ =Pdim of dual of G.

General Sample Complexity via Dual Classes

Theorem [Balcan-DeBlasio-Kingsford-Dick-Sandholm-Vitercik, STOC 2021&JACM 2024]
Suppose for each u;(a) there are < N boundary fns f;,f,, ... € F s. t within each region
defined by them, 3 g € G s.t. y;(a) = g(a).
Pdim({u,()}) = O((dp + dg+) + dg- logN)
dg+ = VCdim of dual of F, dg+ =Pdim of dual of G.

Proof insights:

« Fix D instances I, ..., Ip and D thresholds z,, ..., zp. Bound # sign patterns (u,(I,), ..., u,(Ip)) ranging over
all a. Equivalently, (u;, (), ..., uy, (o).

* Use VCdim of F*, bound # of regions induced by u; (), ..., uy, () : (eND)9F.
* On aregion, exist g, ..., g1, S.t.,(u, (@), ..., ug, (@) = (gy, (@), ..., g1, (@), which equals (a(g,l), ...,a(g,D)).

These are fns in dual class of G. Sauer’s lemma on G*, bounds # of sign patterns in that region by (eD)%*.

« Combining, total of (eND)%(eD)9*. Set to 2P and solve.

Different Algos Work in Different Settings

[Balcan-Dick-Lang, ICLR’20]
« Optimal parameters vary across different distributions.

« Choosing the parameter can give large improvements to loss; improvements over SL
and CL by interpolating between them.

Cifar10 MNIST
0.8 0.8 1
—— 5C — 5C
" AC = AC
8 0.7 g 071
g g
€ ‘E 0.6 1
— 0.5 |
0.5 J
7000 025 050 075 1.00 000 025 050 075 1.00
(44 a
Omniglot Rings and Discs
0.30
0.8 - — sC
y - y 0.25 -
Q Q 0.20 -
S 07 S
£ £ 0.15 |
E ocl £
(Ié : ’IE" 0.10 -
— sC
05 0.05 - A

0.00

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
a o

Goldberg-Jderrum (GJ) Framework

Theorem [Bartlett, Indyk, Wagner. COLT'22] Assume o € R", i.e. each A, € Alg has n real param.
For any | and z, there is a GJ procedure [, that determines for all o if u (o) =2z by
evaluating I'l distinct predicates (ratios of polys) with max. degree A. Then:

Pdim(tuy(D}) = O(n log(AM))

GJ (95) Procedure

Goldberg-Jerrum (GJ) Framework

Theorem [Bartlett, Indyk, Wagner. COLT'22] Assume o € R", i.e. each A, € Alg has n real param.
For any | and z, there is a GJ procedure [, that determines for all o if u,(a) 2z by
evaluating 1 distinct predicates (ratios of polys) with max. degree A. Then:

Pdim(tuy(D}) = O(n log(AM))

Theorem [Balcan, Ngyuen, Sharma, TMLR'25] Assume o € R", i.e. each A, € Alg has n real param.
For any instance | and threshold z, there is a Pfaffian GJ algorithm I',, that determines
for all o if u(a) =2z by evaluating I1 distinct Pfaffian predicates with Pfaffian chain length
g, degree A, and Pfaffian degree M.

Pdim({u,(D}) = 0(n?qg? + ngln(A + M) + nln1I)

Online Algorithm Selection

|nStanCeS arrive Online one by one. [Balcan-Dick-Vitercik, FOCS’18], [Balcan-Dick-Pedgen, UAI’20]

Guarantee: no regret - cumulative performance of learner comparable to performance of
best algorithm from the family in hindsight.

——————

Challenge: loss functions volatile. _'———-----_' -

Our contribution: identify general properties (piecewise Lipschitz fns with dispersed
discontinuities) sufficient for no regret guarantees.

Not dispersed Dispersed
S /7
\/\ /\/ A N O \/ \ ~ \|/-
—/hl = \|-|-|-|-|-|n|/ — |4§ —m—'—l"—l .
A

Many boundaries within interval Few boundaries within any

interval

Dispersion, Sufficient Condition for No-Regret

[Balcan-Dick-Vitercik, FOCS’18], [Balcan-Dick-Pedgen, UAI’20]
Full info: exponentially weighted forecaster [cesa-sianchi-Lugosi 2006]

Oneachroundt € {1,...,T}:

t—-1
« Sample a; from distr. p;: p(a) < exp (Az us(a)>

s=1

density of a exponential in its
performance so far

No Regret Guarantees: _
Disperse

/
—#il—\ru—lx\“

Disperse fns, regret O(v/Td fnc of problem)).

Key Questions

« What are interesting tunable families of algos?

 How do we tune algos, to achieve best performance for a given domain,
with provable guarantees?

 Data driven algo design as distributional learning

Suffices to show that dual class {u;(:): instances I} is structured.

 Data driven algo design as online learning

[Balcan-Dick-Vitercik, FOCS'18], [Balcan-Dick-Pegden, UAI'20], [Balcan-Sharma, NeurlPS 2021]

Disperse fns, regret O(v/Td fnc of pb)).

Who designs good machine learning algorithms?

« Often hand-designed, with tunable parameters.

 How do we tune machine learning algorithms with
provable guarantees?

* What are interesting tunable families of algos?

Roadmap

% Introduction

% Major techniques used in practice
> Bayesian Optimization
> Bandit-based methods
> (Case studies: NAS and LLMs
% Data-driven algorithm design
> Learning-theoretic guarantees
> Distributional learning
> Online learning

% Tuning core ML algorithms
> Linear regression, decision trees
> Semi-supervised learning, neural networks

® Future research

19

Regularized linear regression

B

2 B2
ly - X513
Given instance (X, y) € R"xP x R™ (3: contours (
m: number of examples g@ /

X;+: regressor, p features
y;- regressand or dependent variable

S
%

B B
L1)
if
Regularized linear regression vaditm<y notsparse
HHASSOR o ramin e Iy~ XBIL A IR, [Tibshirani 96]
L2 (Ridge): [Hoerl & Kennard 70]

Bz = argmin g ¢ guxp Iy = XBIF +A NG 2

Regularized linear regression

Given dataset (X, y) € Rmxp x R™
m: number of examples

X;*: regressor, p features l
i regressand or dependent variable

Find Ben for
each At A =, | Find X0, AY
Regularized linear regression E;i“;;g‘;i
Elastic net: Ben = argmin g c s 1y — XBIZ+A, 11, + A1 12 [Zou & Hastie 05]
Objective

: Q: How to set hyperparameter a = (A4, Ao) for given dataset?
selection

A: Use a hold out dataset, a grid of parameter values, minimize sqg-error on held-out set

Multiple instances

n instances of the regression problem

L= (X®, y, X 0, 1,0) € Rmxp x Rmi x Rmixp x Rm’

7

m;,m; <m, p;<p.

A O A O A O

0 50 ° prs
)%O @) o @) o ©
'p OO& o/ 0 e}

v
v
v

Multiple instances

n instances of the regression problem

L= (X0, y0, X0, 17,0) € Rmxp x R™ x R™xP x R™"

7

m;,m; <m, p;<p.

1 . ae
4 4 4 o loss(P) = _,||ﬂv.1.i — Xwfll*
o) ® o m z
o ® © P \
@) @)
@ @) (@) (@] _ . X
P/Oz{/o OQ)OO 5O fit on (-\lruiu- Ytrain)
> . R using predicted (A1, A2)

Multiple instances

Instances
(drawn from D) Test instance
A (drawn from D)
o ©
)o/oo/o
Il P % <9 © I=
o)
(Xtrain’ ytrain’ Xval’ yval)
, > _
r 0 A Hyperparameter = A
I R tuning algorithm
Fit B on Xtraim ytrain
00> with reg. coeff. A
13 o ood)
o @ ~
Compute
u validation loss for
= B on Xvals yval

EIaSt|C Net [Balcan, Khodak, Sharma and Talwalkar, NeurlPS’22, Balcan, Nguyen, Sharma, NeurlPS’23]

Example application: Tuning Elastic Net coefficients.

min,, || Xw — y||? + Al|w||>+ A||w]|4

A

Input: Training data X, y and validation data X, y".
Goal: Tune A, A” to minimize dual validation loss + LO terms (AIC/BIC).

Lemma: The dual validation loss is piecewise decomposable in the A, A’ space with
— at most d3“ algebraic boundaries of degree at most d,
— at most 3¢ distinct piece functions, each a rational function with degree at most 2d.

Challenge: sharp transition boundaries, due to LO terms in AIC/BIC validation loss.

25

EIaSt|C Net [Balcan, Khodak, Sharma and Talwalkar, NeurlPS’22, Balcan, Nguyen, Sharma, NeurlPS’23]

Lemma: The dual validation loss is piecewise decomposable in the A, A’ space with
— at most d3“ algebraic boundaries of degree at most d,

— at most 3¢ distinct piece functions, each a rational function with degree at most 24.

Proof sketch:
1. Elastic netis equivalent to a lasso for some modified
datasets X’,y’ that depend on the ridge coefficient. i
2. Lasso has a piecewise linear solution in terms of the L1 5
penalty with known conditions for critical points.
3. 1+2 gives polynomial boundary functions and rational
piece functions in terms of both the coefficients.

@A)

Theorem: Sample complexity of tuning A, A" is O(d/&?).

26

Decision Trees

Trees for classification:

- Each internal node < Splitting rule
- Each leaf node < Single Class - 50

Interpretable ML models YIE% \O Ylf/ \

- axis-parallel decision boundaries Screen Do Screen
- Neural nets are hard to interpret lungs nothing Mg ”Oth'”g

Hard to learn optimal trees, but several useful heuristics!

Learning optimal decision trees is hard!

Hardness of DT learning
- NP-compIete. [Laurent and Rivest (1976)]
- Superconstant Inapproximability of Decision Tree Learning.

[Koch et al. COLT 2024] [Koch and Strassle FOCS 2023, FOCS 2024]

Faster optimal decision trees (speed up the exp time branch-and-bound algorithm)

[Hu et al. NeurlPS 2019]
[McTavish et al. AAAI 2022]
[Babbar et al. ICML 2025] (combines greedy with branch-and-bound)

Alternative: data-driven formulation,
instances [: labeled datasets, utility u(I, a) : avg. acc. on instance [

Splitting criterion

O

Top-down decision tree learning
Inputs: Node function class F, tree size t,
splitting criterion G
e Start with leaf node

Splitting criterion

Top-down decision tree learning
Inputs: Node function class F, tree size t,
splitting criterion G
e Start with leaf node
e While at most t leaf nodes
o Split leaf node I using node function f
which maximizes “splitting criterion”

Splitting criterion

Top-down decision tree learning v Q
Inputs: Node function class F, tree size t, /

splitting criterion G Screen
e Start with leaf node lungs nothlng
e While at most t leaf nodes
o Split leaf node I using node function f
which maximizes “splitting criterion”

F = {Smoke, Age >30, Age >50}

Splitting criterion

Top-down decision tree learning v Q
Inputs: Node function class F, tree size t, /

splitting criterion G SaEEr Age
e Start with leaf node lungs > 50
e While at most t leaf nodes Ylfy NO
o Split leaf node | using node function f S e
which maximizes “splitting criterion” IS;ZT nothing
Key decision: Which node to split next F = {Smoke, Age >30, Age >50}

and how? = splitting criterion

Splitting criterion (a greedy approach)

Top-down decision tree learning
Inputs: Node function class F, tree size t,
splitting criterion G

GT)= Y wlgpi(l),---,pc(1)})

[eleaves(T)

w(l): number of datapoints that map to leaf |
pi(l): fraction of them labeled i

F: binary functions for labeling internal nodes: features — {left, right}

G: uses how the current tree partitions the data into different classes to
determine which node to split next and using with function in J

Overall algorithm: Greedy approach to growing a decision tree top-
down (from the root to leaves by repeatedly replacing an existing leaf
with an internal node based on a “splitting criterion”).

Algorithm family: interpolation of popular splitting criteria.

Splitting criterion

@ learn DecisionTreeClassifier

class sklearn.tree.DecisionTreeClassifier(*, criterion="gini',
splitter="best', max_depth=None, min_samples_split=2, min_samples_leaf=1,
min_weight_fraction_leaf=0.0, max_features=None, random_state=None,

max_leaf_nodes=None, min_impurity_decrease=0.8, class_weight=None,
ccp_alpha=0.0, monotonic_cst=None) [source]
A decision tree classifier.

Read more in the User Guide.

Parameters:

criterion : ({“gini”, “entropy”, “log_loss"}, default="gini"

Splitting criterion [Balcan and Sharma (UAI 2024)]

Empirical research suggests different criteria work best on different data [mingers 1989

e Entropy criterion (CART) {p (D), p(D}) = — ;Pi log p;
e Gini impurity (ID3) a{p1(D),...,p(1)}) = Zpi(l —)
e Kearns Mansour 96 !

(a, B)-Tsallis entropy Family of top-down DT learning algorithms

A single criterion which interpolates all three!

c A
TSALLIS . . o
Gorp(P)i=—= (1 (;m)

Splitting criterion [Balcan and Sharma (UAI 2024)]

Ins Banknote Breast cancer Wine
05 \ Z

065
TsSALLIS (P) 08

92,1 019:

125

14

QE?;LLIS(P) B iiz

i 20

. TSALLIS EY
lima—1 Ja 1 (P) 245
278

12345678 13345678 12345678 12345678
s 5 s :

Theorem: We can learn to tune («,) using O (%ﬂf) problem samples.

Splitting criterion [Balcan and Sharma (UAI 2024)]

Theorem: We can learn to tune («, 3) using 0 (ﬂiﬂiﬁ) problem samples.

Proof insights:
e Uses dual function (accuracy as a function of («, 3) on a fixed

instance (X, y)) analysis
o Dual function is piecewise-constant with boundaries given by
exponential equations in («, B):
e Induction over top-down rounds, bounding the number of distinct
behaviors (which node is split and how) in each round
e Over t rounds, O(|F22) distinct behaviors, which implies pseudo-

dimension is O(t log |F]t).

Gradient-boosted decision trees (salcan and Sharma (Arxiv 2025)]

Regularized objective over a collection of K trees (size at most t),
L({T;}, D) =I({T;}, D) + %2 A 3, ||weights of leaves in T,||?

Splitting-criterion in XGBOOST [chen and Guestrin (2016)]:

- Across all nodes of all trees in the ensemble, split the one that maximizes a

. 2 2
score based on first and second order gradients GL , Gr _ G
Hip+A Hrp+A HA+A

State-of-the-art approach for tabular datasets!
[McElfresh et al. (NeurlPS 2023), Jayawardhana et al. (2025)]

Key idea: show piecewise-constant dual with polynomial boundaries

Gradient-boosted decision trees (salcan and Sharma (Arxiv 2025)]

Regularized objective over a collection of K trees (size at most t),
L({T;}, D) =I({T;}, D) + %2 A 3, ||weights of leaves in T,||?

Splitting-criterion in XGBOOST [chen and Guestrin (2016)]:

- Across all nodes of all trees in the ensemble, split the one that maximizes a

. 2 2
score based on first and second order gradients GL , Gr _ G
Hip+A Hrp+A HA+A

There are at most tK|#] different candidate splits, or at most 2K2|#]? pairs

Also over the course of XGBOOST, we have at most {K splits.

= Computable using a GJ algorithm with at most (#2K?|#]%)X predicates (degree 6)
= Pdim(U) = O(tK log(tK|#))

Roadmap

% Introduction

% Major techniques used in practice
> Bayesian Optimization
> Bandit-based methods
> (Case studies: NAS and LLMs
% Data-driven algorithm design
> Learning-theoretic guarantees
> Distributional learning
> Online learning

% Tuning core ML algorithms
> Linear regression, decision trees
> Semi-supervised learning, neural networks

» Conclusion

40

Example: Semi-Supervised Learning saican and sharma (NeurlPs 2021)]

* Repeated problems e.g. emails on an email server, spam vs. non-spam

Goal: learn how to connect points using a graph s.t. a (hard or soft) min-cut yields accurate predictions

o A A A AA
A
A A o, A o 4, , 4
° A ™ A A
o * o 4 o AA ¢ o A A
. A A . A A A
o ® o ® A A e % A AAA o ® o ®
° ° A
. :o .AAAA A .o o AMA . :....‘A‘A
. o.o.AA e%000 % A . .
° P)
°
° A .

41

Example: Semi-Supervised Learning (saican and sharma (NeurlPs 2021)]

* Graph edges are set using some kernel with hyperparameters
o Polynomial kernel: ({f(u), f(v)) + a)
o RBF kernel: exp(-d(u, v)*/a?)
* Instances I: partially labeled datasets; Utility: average accuracy of graph SSL

Piecewise-constant dual function with boundaries given by poly/exp equations

o A A A AA
A A
A A o, A ° AAAAA
L A A L A A % A
° A ™ A A
° L o A L A A o o A A
(] A A (] A ° A A
o ® o ® A A o % A AAA . o ®
° ° A
o ‘e QAAAA A .' o M4 . :..QOAAAA
.
. Q.O.AA e%000 0 LA . .
° o o0
A o0

42

Example: Semi-Supervised Learning (saican and sharma (NeurlPs 2021)]

Goal: learn how to connect points using a graph s.t. a (hard or soft) min-cut yields accurate predictions

o statistical learning: tight upper+lower bounds on learning-theoretic complexity

o online learning: no regret by showing critical points are dispersed; primal-dual
algorithm for computing pieces exactly;

o faster approx pieces using conjugate gradient method [Sharma and Jones, UAI 2023]

o A A A AA
A A A
A A o, A o A
] A] A LS A
o 4 A A A A
o * o & ¢ Aa ® o 4 A
o‘..o ‘A A 0%’ . Ll o Lo 4 A
. . A
o :o R AAAA A ..® o A A o oo, ..‘A‘A
o
° * . ouh e®s0 0 % LA ° .
o ® o0
A (X

43

Refined GJ Framework [Bartlett, Indyk, Wagner, COLT’22]

Example application: Low-rank approximation.

Inst, I: Given a sparse matrix 4 € R"*" withHAHF — 1, target rank k < n.
Goal: Sparse matrix A4 with rank k that minimizes (approximates A well).

Exact algorithm based on SVD (singular value decomposition) is inefficient!

Faster algorithm IVY [indyk, vakilian, Yuan '19] iS family of parameterized heuristics
uses a m x n auxiliary matrix (runtime nearly linear in #non-zero entries!).

Theorem: Sample complexity of tuning IVY is O(mn/e?).

44

Applications [ML, stats, optimization]

Low-rank approximation [Bartlett, Indyk, Wagner, COLT 2022]

Regularizing linear (Elastic Net) and logistic regression [BKST NeurlPS 2022, BNS NeurlPS
2023, BGS 2025]

Simulated Annealing [Blum, Dan, Seddighin, AISTATS 2021]

Learning to branch and cut [Balcan, Dick, Sandholm, Vitercik, ICML 2018, JACM 2024]

Clustering (both k-center and hierarchical) [BNvw cOLT 2017, BDW NeurlPS 2018, BDL ICLR 2020]
Gradient descent [Gupta and Roughgarden, ITCS 2016]

Integer and Linear Programming [Balcan et al., Khodak et al., Cheng and Basu, Sakaue and Oki (2024)]

45

More applications [CS theory, Comp bio, Mech design, Energy ...]

Knapsack, Maximum Weighted Independent Set [Gupta and Roughgarden, ITCS 2016, Balcan et
al., FOCS 2018, Sun et al. 2022]

Max cut, Max 2-SAT [Balcan et al., COLT 2017]
Dynamic Programming, Sequence Alignment [Balcan et al., COLT 2017, STOC 2021, NeurlPS 2024]
Mechanism and game design [Balcan et al., EC18, NeurlPS 24, Jin et al. NeurlPS 24, Diitting et al. EC 2025]

Energy and climate science [Mathioudaki et al., 2023, Bostandoost et al. 2024]

46

Tuning deep networks: parameters and hyperparameters

fixed during training

P
e Hyperparameter space A =[a.,;, dmax] € R (hyperparameter o)

e Model parameter space W c R (parameters/weights w) «— |

updated during training

e Example (learning activation functions):
o Consider a DNN 7, ;,, with model weights w = (w;, ..., wp)

font

o Parametric ReLU activation function

- })
PReLU(z) = { ifz20 T()=ay
axr, otherwise

o More generally, one can interpolate* any activation functions
0(z) = a01(z) + (1 -) 0x(2)

where o0,, 0, are common activation functions, a is interpolation hyperparameter

*inspired by DARTS approach for Neural Architecture Search [Liu et al. ICLR’19]

Model vs optimization hyperparameters

Impact learned weights w

Are part of:

Examples

“Model” or “architectural”
hyperparameters

YES

learned deep network 7, ,,

activation function
hyperparameters, kernel
parameters

“Optimization”
hyperparameters

YES
optimization algorithm
learning rate,

learning schedule,
momentum

48

Tuning deep network hyperparameters saican, Nguyen, sharma, 2025]

Instances I: labeled datasets; utility: avg acc
Sample complexity of data-driven tuning of model hyperparameters (e.g.
activation fns, GNN kernels) with p/w poly parameter-dependent dual fn

w) aod
e -

Lo

Poly surface depicting parameter-dependent U*(@) = Ug(X) = supy, fil @, w)

dual f,(a, w) and piecewise structure of dual new techniques to bound discontinuities and
i oscillations of dual

49

Learning the interpolated activation function

e DNN 1, ., with L layers
e Layeri: W, params (total W), k; nodes (total k)

o 0(z)=a0(2)+(1-a)o,(z), where o,, 0, piecewise poly.
with max degree A, p breakpoints

e T samples (not assumed iid) in each problem instance

50

Learning the interpolated activation function isaican, Nguyen, sharma, 2025]

Theorem (informal): Pdim(U) = O(log M + d log(AN)), where

M is the number of connected components
N is the number of boundaries
d is the dimension of w

A is the maximum polynomial degree

Application: For the activation function interpolation:
Pdim(U) = O(L*W log A + LW log(Tpk))

Open Q: Improve?

51

Tuning learning rate in gradient descent [shama, 2025]

Gradient descent algorithm: Instance is (x, f), loss = num steps till convergence.

Inputs: initial point x, iterations H, threshold 0. Hyperparameter: learning rate n

1: Initialize 21 < =
2. fori=1,...,Hdo

s oW

Output: x;

if

|V f(z;)|| < 6 then
Return z;

Tiv1 = x; — NV f(x;)

Prior work by Gupta and Roughgarden (2016):
Assumes: f is convex and smooth

Sample complexity of tuning learning rate is OH?3«2)

We get O(H3%/:2) sample complexity even for
non-convex non-smooth functions in deep

networks! Open Q: Improve?

52

Learning from small-samples

Can we figure out how to find the good hyperparameters for larger datasets/models based
on learning good hyperparameters for smaller datasets/models?

[Chatziafratis, Karmarkar, Li and Vitercik, 2025] give some initial answers for algorithm selection
in clustering

Open Q:
Neural Networks?
LLMs scaling laws?

53

Algorithms with Predictions

A new approach to designing algorithms, with predictions from machine learning
* Clustering [Ergun et al. ICLR 2022, Silwal et al. ICLR 2023, Braverman et al. arXiv 2025]

* Graph algorithms [Dinitz et al. 2021, Chen et al. ICML 2022, Aamand et al. arXiv 2025]

* Many, many more [350+ recent papers https://algorithms-with-predictions.github.io/]

Hot research topic, but how do we actually learn the predictions? [Khodak et al. NeurlPS 2022]
Open Q:

Learning-augmented
hyperparameter tuning?

54

Roadmap

% Introduction
* Major techniques used in practice
> Bayesian Optimization
> Bandit-based methods
> (Case studies: NAS and LLMs
s Data-driven algorithm design
> Distributional learning
> Online learning
% Tuning core ML algorithms
> Linear regression, decision trees
> Semi-supervised learning, neural networks

< Conclusion

55

Conclusion

e Last~20 years:

o Explosive growth in powerful ML algorithms and their range of applications
o New practically successful approaches to algorithm design

e Last 10 years:

o Machine learning for algorithm design acquired solid foundations in
learning theory

e Last5 years:

o Hyperparameter tuning is rapidly transforming from an art to a principled
science

56

Next five years and beyond ...

Other applications to tuning important hyperparameters and algorithms
Focus on statistical complexity ——— computationally efficient methods?
Making currently used approaches in practice more structure-aware

Beyond the worst-case complexity: distribution-dependent bounds

More challenging high-dimensional and distributed settings

o E.qg. extend our model hyperparameter tuning result to multiple
hyperparameters

57

Next five years and beyond ...

For essentially all ML algorithms of interest, we will know how to provably
configure hyperparameters

ML can be used to solve its own problems of robustness, interpretability and
trustworthiness

Reliable and safe use of Al is going to be critical
o We require more from generative Al
o Data-driven approaches are promising candidates

ML-designed algorithms for ML can unlock as-yet untapped potential

58

Questions and transition to panel...

- Linear Ridge/Lasso penalties
. regression
k Logistic L1, L2 regularization
regression penalties
Decision splitting criterion,
Tree pruning cost, max depth
R 2 k-Nearest k, weights, metric,
AA AO ° neighbors abstention threshold
° @ o Support Vector C, kernel, gamma
° 0% e Machines
Neural activation function,

Networks learning schedule, ...

References

[1] Mockus, Jonas. "The Bayesian approach to local optimization." In Bayesian approach to global optimization: Theory and applications, pp. 125-156.
Dordrecht: Springer Netherlands, 1989.

[2] Linial, Nathan, Yishay Mansour, and Noam Nisan. "Constant depth circuits, Fourier transform, and learnability." Journal of the ACM (JACM) (1993).

[3] Srinivas, Niranjan, Andreas Krause, Sham Kakade, and Matthias Seeger. "Gaussian Process Optimization in the Bandit Setting: No Regret and
Experimental Design." In Proceedings of the 27th International Conference on Machine Learning, pp. 1015-1022. Omnipress, 2010.

[4] Bergstra, James, Rémi Bardenet, Yoshua Bengio, and Balazs Kegl. "Algorithms for hyper-parameter optimization." Advances in neural information
processing systems 24 (2011).

[5] Maclaurin, Dougal, David Duvenaud, and Ryan Adams. "Gradient-based hyperparameter optimization through reversible learning." In International
conference on machine learning, pp. 2113-2122. PMLR, 2015.

[6] Domhan, Tobias, Jost Tobias Springenberg, and Frank Hutter. "Speeding up automatic hyperparameter optimization of deep neural networks by
extrapolation of learning curves." In [IJCAI, vol. 15, pp. 3460-8. 2015.

[7] Gupta, Rishi, and Tim Roughgarden. "A PAC approach to application-specific algorithm selection." In Proceedings of the 2016 ACM Conference on
Innovations in Theoretical Computer Science, pp. 123-134. 2016.

[8] Jamieson, Kevin, and Ameet Talwalkar. "Non-stochastic best arm identification and hyperparameter optimization." In Artificial intelligence and statistics, pp.
240-248. PMLR, 2016.

[9] Finn, Chelsea, Pieter Abbeel, and Sergey Levine. "Model-agnostic meta-learning for fast adaptation of deep networks." In International conference on
machine learning, pp. 1126-1135. PMLR, 2017.

60

References

[10] Frazier, Peter |. "A tutorial on Bayesian optimization." arXiv preprint arXiv:1807.02811 (2018).

[11] Balcan, Maria-Florina, Travis Dick, and Ellen Vitercik. "Dispersion for data-driven algorithm design, online learning, and private optimization." In 2018
IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pp. 603-614. IEEE, 2018.

[12] Franceschi, Luca, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil. "Bilevel programming for hyperparameter optimization
and meta-learning." In International conference on machine learning, pp. 1568-1577. PMLR, 2018.

[13] Li, Lisha, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. "Hyperband: A novel banditbased approach to
hyperparameter optimization." Journal of Machine Learning Research 18, no. 185 (2018): 1-52.

[14] Falkner, Stefan, Aaron Klein, and Frank Hutter. "BOHB: Robust and efficient hyperparameter optimization at scale." In International conference on
machine learning, pp. 1437-1446. PMLR, 2018.

[15] Balcan, Maria-Florina, Travis Dick, Tuomas Sandholm, and Ellen Vitercik. "Learning to branch." In International conference on machine learning, pp.
344-353. PMLR, 2018.

[16] Kandasamy, Kirthevasan, Willie Neiswanger, Jeff Schneider, Barnabas Poczos, and Eric P. Xing. "Neural architecture search with bayesian
optimisation and optimal transport." Advances in neural information processing systems 31 (2018).

[17] Hazan, Elad, Adam Klivans, and Yang Yuan. "Hyperparameter Optimization: A Spectral Approach." ICLR (2018).
[18] Liu, Hanxiao, Karen Simonyan, and Yiming Yang. "DARTS: Differentiable Architecture Search." In International Conference on Learning

Representations, 2019.

61

References

[19] Berkenkamp, Felix, Angela P. Schoellig, and Andreas Krause. "No-regret Bayesian optimization with unknown hyperparameters." Journal of
Machine Learning Research 20, no. 50 (2019): 1-24.

[20] Tan, Mingxing, and Quoc Le. "Efficientnet: Rethinking model scaling for convolutional neural networks." In International conference on machine
learning, pp. 6105-6114. PMLR, 2019.

[21] Feurer, Matthias, and Frank Hutter. Hyperparameter optimization. Springer International Publishing, 2019.

[22] Li, Liam, and Ameet Talwalkar. "Random search and reproducibility for neural architecture search." In Uncertainty in artificial intelligence, pp. 367-
377. PMLR, 2020.

[23] Maria-Florina Balcan. Data-Driven Algorithm Design. In Tim Roughgarden, editor, Beyond the Worst-Case Analysis of Algorithms. Cambridge
University Press, 2020.

[24] Kandasamy, Kirthevasan, Karun Raju Vysyaraju, Willie Neiswanger, Biswajit Paria, Christopher R. Collins, Jeff Schneider, Barnabas Poczos, and
Eric P. Xing. "Tuning hyperparameters without grad students: Scalable and robust bayesian optimisation with dragonfly." Journal of Machine Learning
Research 21, no. 81 (2020): 1-27.

[25] Balcan, Maria-Florina, Travis Dick, and Manuel Lang. "Learning to Link." In International Conference on Learning Representation. 2020.
[26] Lin, Jimmy, Chudi Zhong, Diane Hu, Cynthia Rudin, and Margo Seltzer. "Generalized and scalable optimal sparse decision trees." In International

conference on machine learning, pp. 6150-6160. PMLR, 2020.

[27] Kaplan, Jared, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario
Amodei. "Scaling laws for neural language models." arXiv preprint arXiv:2001.08361 (2020).

62

References

[28] Balcan, Maria-Florina, Travis Dick, and Manuel Lang. "Learning to Link." In International Conference on Learning Representation. 2020.

[29] Parker-Holder, Jack, Vu Nguyen, and Stephen J. Roberts. "Provably efficient online hyperparameter optimization with population-based bandits."
Advances in neural information processing systems 33 (2020): 17200-17211.

[30] Maria-Florina Balcan, Travis Dick, and Dravyansh Sharma. "Learning piecewise Lipschitz functions in changing environments." In International
Conference on Artificial Intelligence and Statistics, pp. 3567-3577. PMLR, 2020.

[31] Balcan, Maria-Florina, and Dravyansh Sharma. "Data driven semi-supervised learning." NeurlPS (2021): 14782-14794.

[32] Balcan, Maria-Florina, Dan DeBlasio, Travis Dick, Carl Kingsford, Tuomas Sandholm, and Ellen Vitercik. "How much data is sufficient to learn high-
performing algorithms? Generalization guarantees for data-driven algorithm design." Symposium on Theory of Computing (STOC), 2021.

[33] Blum, Avrim, Chen Dan, and Saeed Seddighin. "Learning complexity of simulated annealing." In International conference on artificial intelligence and
statistics, pp. 1540-1548. PMLR, 2021.

[34] Yang, Greg, and Edward J. Hu. "Tensor programs iv: Feature learning in infinite-width neural networks." In International Conference on Machine
Learning, pp. 11727-11737. PMLR, 2021.

[35] Balcan, Maria-Florina, Mikhail Khodak, Dravyansh Sharma, and Ameet Talwalkar. "Learning-to-learn non-convex piecewise-Lipschitz functions."
Advances in Neural Information Processing Systems 34 (2021): 15056-15069.

[36] Bartlett, Peter, Piotr Indyk, and Tal Wagner. "Generalization bounds for data-driven numerical linear algebra." In Conference on Learning Theory,
2022.

[37] Balcan, Maria-Florina, Mikhail Khodak, Dravyansh Sharma, and Ameet Talwalkar. "Provably tuning the ElasticNet across instances." Advances in
Neural Information Processing Systems 35 (2022): 27769-27782. 63

References

[38] Sun, Bo, Lin Yang, Mohammad Hajiesmaili, Adam Wierman, John CS Lui, Don Towsley, and Danny HK Tsang. "The online knapsack problem with
departures." Proceedings of the ACM on Measurement and Analysis of Computing Systems 6, no. 3 (2022): 1-32.

[39] Hoffmann, Jordan, Sebastian Borgeaud, Arthur Mensch, ElenaBuchatskaya, Trevor Cai, Eliza Rutherford, Diego de Las Casas et al. "Training
compute-optimal large language models." arXiv preprint arXiv:2203.15556 (2022).

[40] Lindauer, Marius, Katharina Eggensperger, Matthias Feurer, André Biedenkapp, Difan Deng, Carolin Benjamins, Tim Ruhkopf, René Sass, and Frank
Hutter. "SMAC3: A versatile Bayesian optimization package for hyperparameter optimization." Journal of Machine Learning Research 23 (2022): 1-9.

[41] Balcan, Maria-Florina, Anh Nguyen, and Dravyansh Sharma. "New bounds for hyperparameter tuning of regression problems across instances."
Advances in Neural Information Processing Systems 36 (2023): 80066-80078.

[42] Sharma, Dravyansh, and Maxwell Jones. "Efficiently learning the graph for semi-supervised learning." In Uncertainty in Artificial Intelligence, 2023.

[43] Silwal, Sandeep, Sara Ahmadian, Andrew Nystrom, Andrew McCallum, Deepak Ramachandran, and Seyed Mehran Kazemi. 'KwikBucks: Correlation
Clustering with Cheap-Weak and Expensive-Strong Signals." In The Eleventh International Conference on Learning Representations, ICLR (2023).

[44] Balcan, Maria-Florina, Avrim Blum, Dravyansh Sharma, and Hongyang Zhang. "An analysis of robustness of non-Lipschitz networks." Journal of
Machine Learning Research 24, no. 98 (2023): 1-43.

[45] Koch, Caleb, Carmen Strassle, and Li-Yang Tan. "Properly learning decision trees with queries is NP-hard." In 2023 IEEE 64th Annual Symposium on
Foundations of Computer Science (FOCS), pp. 2383-2407. IEEE, 2023.

[46] Mathioudaki, Angeliki, Georgios Tsaousoglou, Emmanouel Varvarigos, and Dimitris Fotakis. "Data-Driven Optimization of Electric Vehicle Charging

Stations." In 2023 International Conference on Smart Energy Systems and Technologies (SEST), pp. 1-6. IEEE, 2023. o4

References

[47] Sharma, Dravyansh. "Data-driven algorithm design and principled hyperparameter tuning in machine learning." PhD dissertation, CMU (2024).

[48] Balcan, Maria-Florina, and Dravyansh Sharma. "Learning Accurate and Interpretable Decision Trees." In Uncertainty in Artificial Intelligence, pp. 288-307.
PMLR (2024). Extended version “Learning Accurate and Interpretable Tree-based Models” arXiv preprint arXiv:2405.15911 (2025).

[49] Franceschi, Luca, Michele Donini, Valerio Perrone, Aaron Klein, Cédric Archambeau, Matthias Seeger, Massimiliano Pontil,and Paolo Frasconi.
"Hyperparameter Optimization in Machine Learning." arXiv preprint arXiv:2410.22854 (2024).

[50] Sharma, Dravyansh. "No internal regret with non-convex loss functions." In Proceedings of the AAAI Conference on Artificial Intelligence, vol. 38, no. 13,
pp. 14919-14927. 2024.

[51] Cheng, Hongyu, and Amitabh Basu. "Learning cut generating functions for integer programming." Advances in Neural Information Processing Systems 37
(2024): 61455-61480.

[52] Balcan, Maria-Florina, Christopher Seiler, and Dravyansh Sharma. "Accelerating ERM for data-driven algorithm design using output-sensitive techniques.
Advances in Neural Information Processing Systems 37 (2024): 72648-72687 .

[53] Sakaue, Shinsaku, and Taihei Oki. "Generalization bound and learning methods for data-driven projections in linear programming." Advances in Neural
Information Processing Systems 37 (2024): 12825-12846.

[54] Elias, Marek, Haim Kaplan, Yishay Mansour, and Shay Moran. "Learning-augmented algorithms with explicit predictors." Advances in Neural Information
Processing Systems 37 (2024): 97972-98008.

[565] Sambharya, Rajiv, Georgina Hall, Brandon Amos, and Bartolomeo Stellato. "Learning to warm-start fixed-point optimization algorithms." Journal of

Machine Leamning Research 25, no. 166 (2024): 1-46. 65

References

[56] Dumouchelle, Justin, Esther Julien, Jannis Kurtz, and Elias B. Khalil. "Neur2bilo: Neural bilevel optimization." Advances in Neural Information Processing
Systems 37 (2024): 86688-86719.

[57] Xie, Yagqi, Will Ma, and Linwei Xin. "VC theory for inventory policies." arXiv preprint arXiv:2404.11509 (2024).

[58] Bostandoost, Roozbeh, Walid A. Hanafy, Adam Lechowicz, Noman Bashir, Prashant Shenoy, and Mohammad Hajiesmaili. "Data-driven Algorithm
Selection for Carbon-Aware Scheduling." ACM SIGENERGY Energy Informatics Review 4, no. 5 (2024): 148-153.

[59] Sharma, Dravyansh, and Arun Suggala. "Offline-to-online hyperparameter transfer for stochastic bandits." In Proceedings of the AAAI Conference on
Atrtificial Intelligence, vol. 39, no. 19, pp. 20362-20370. 2025.

[60] Balcan, Maria-Florina, Anh Tuan Nguyen, and Dravyansh Sharma. "Sample complexity of data-driven tuning of model hyperparameters in neural
networks with structured parameter-dependent dual function." Advances in Neural Information Processing Systems 38 (2025).

[61] Schneider L, Bischl B, Feurer M. "Overtuning in Hyperparameter Optimization." 4th International Conference on Automated Machine Learning AutoML
(2025).
[62] Balcan, Maria-Florina, Anh Tuan Nguyen, and Dravyansh Sharma. "Algorithm Configuration for Structured Pfaffian Settings." TMLR (2025).

[63] Jiao, Xianqi, Jia Liu, and Zhiping Chen. "Learming complexity of gradient descent and conjugate gradient algorithms." In Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 39, no. 17, pp. 17671-17679. 2025.

[64] Ditting, Paul, Michal Feldman, Tomasz Ponitka, and Ermis Soumalias. "The pseudo-dimension of contracts." In Proceedings of the 26th ACM
Conference on Economics and Computation, pp. 514-539. 2025.

66

References

[65] Blum, Avrim, and Vaidehi Srinivas. "Competitive strategies to use “warm start” algorithms with predictions." In Proceedings of the 2025 Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 3775-3801. Society for Industrial and Applied Mathematics, 2025.

[66] Iwata, Tomoharu, and Shinsaku Sakaue. "Learning to Generate Projections for Reducing Dimensionality of Heterogeneous Linear
Programming Problems." In Forty-second International Conference on Machine Learning (2025).

[67] Balcan, Maria-Florina, Saumya Goyal, and Dravyansh Sharma. "Distribution-dependent Generalization Bounds for Tuning Linear Regression
Across Tasks." arXiv preprint arXiv:2507.05084 (2025).

[68] Du, Ally Yalei, Eric Huang, and Dravyansh Sharma. "Tuning Algorithmic and Architectural Hyperparameters in Graph-Based Semi-Supervised
Learning with Provable Guarantees." In The 41st Conference on Uncertainty in Artificial Intelligence (2025).

[69] Sharma, Dravyansh. “Gradient Descent with Provably Tuned Learning-rate Schedules.” arXiv preprint arXiv:2512.05084 (2025).

67

	Slide 1: New Frontiers of Hyperparameter Optimization: Recent advances and open challenges in theory and practice
	Slide 2: What is a hyperparameter?
	Slide 3: Hyperparameter tuning and transfer
	Slide 4: Algorithm design for machine learning
	Slide 5: Roadmap
	Slide 6: Roadmap
	Slide 7: Hyperparameter tuning setup
	Slide 8: Bayesian Optimization
	Slide 9: Bayesian Optimization
	Slide 10: BO has its own hyperparameters!
	Slide 11: Bandit-based approaches
	Slide 12: Other approaches and speedups
	Slide 13: Case study: Neural Architecture Search
	Slide 14: Case study: Neural Architecture Search (NAS)
	Slide 15: Large Language Models: Scaling Laws
	Slide 16: Large Language Models: selecting learning rate using muP
	Slide 17: Limitations of popular HPO approaches in practice
	Slide 18: Roadmap
	Slide 19: Roadmap
	Slide 20: Regularized linear regression
	Slide 21: Regularized linear regression
	Slide 22: Multiple instances
	Slide 23: Multiple instances
	Slide 24: Multiple instances
	Slide 25: Elastic Net [Balcan, Khodak, Sharma and Talwalkar, NeurIPS’22, Balcan, Nguyen, Sharma, NeurIPS’23]
	Slide 26: Elastic Net [Balcan, Khodak, Sharma and Talwalkar, NeurIPS’22, Balcan, Nguyen, Sharma, NeurIPS’23]
	Slide 27: Decision Trees
	Slide 28: Learning optimal decision trees is hard!
	Slide 29: Splitting criterion
	Slide 30: Splitting criterion
	Slide 31: Splitting criterion
	Slide 32: Splitting criterion
	Slide 33: Splitting criterion (a greedy approach)
	Slide 34: Splitting criterion
	Slide 35: Splitting criterion
	Slide 36: Splitting criterion
	Slide 37: Splitting criterion
	Slide 38: Gradient-boosted decision trees
	Slide 39: Gradient-boosted decision trees
	Slide 40: Roadmap
	Slide 41: Example: Semi-Supervised Learning
	Slide 42: Example: Semi-Supervised Learning
	Slide 43: Example: Semi-Supervised Learning
	Slide 44: Refined GJ Framework [Bartlett, Indyk, Wagner, COLT’22]
	Slide 45: Applications [ML, stats, optimization]
	Slide 46: More applications [CS theory, Comp bio, Mech design, Energy …]
	Slide 47: Tuning deep networks: parameters and hyperparameters
	Slide 48: Model vs optimization hyperparameters
	Slide 49: Tuning deep network hyperparameters
	Slide 50: Learning the interpolated activation function
	Slide 51: Learning the interpolated activation function
	Slide 52: Tuning learning rate in gradient descent
	Slide 53: Learning from small-samples
	Slide 54: Algorithms with Predictions
	Slide 55: Roadmap
	Slide 56: Conclusion
	Slide 57: Next five years and beyond …
	Slide 58: Next five years and beyond …
	Slide 59: Questions and transition to panel…
	Slide 60: References
	Slide 61: References
	Slide 62: References
	Slide 63: References
	Slide 64: References
	Slide 65: References
	Slide 66: References
	Slide 67: References

