
New Frontiers of Hyperparameter Optimization:

Recent advances and open challenges in theory and practice

Dec 2, 2025
San Diego

Dravyansh (Dravy) Sharma

IDEAL, TTIC

Maria-Florina Balcan

CMU

Colin White

Meta

HP tuning is a special case of algorithm selection in Machine Learning

2

What is a hyperparameter?

Why so common in ML?

Hard problems + role of data

Linear

regression

Ridge/Lasso penalties

Logistic

regression

L1, L2 regularization

penalties

Decision

Tree

splitting criterion,

pruning cost, max depth

k-Nearest

neighbors

k, weights, metric,

abstention threshold

Support Vector

Machines

C, kernel, gamma

Neural

Networks

activation function,

learning schedule, …

HPs define a collection of

algorithms for learning a

predictor

HP tuning is important across ML

● Data prep + HP tuning take up most of the applied ML researcher hours

● Takes up to 90% of the compute

● Critical in high-stakes and large-scale applications

3

Hyperparameter tuning and transfer

HP transfer is crucial today!

● Unavoidable in LLMs where each of the above is magnified multifold!

Algorithm design for machine learning

● Hyperparameter tuning is poorly understood and yet of critical importance

○ why? ML works on data

4

Data Predictions

● Current practices require incredible amounts of compute and engineering efforts, and

yet with no guarantees!

● Understanding how the performance actually varies with the hyperparameter is crucial for

principled tuning

○ There is NO single best algorithm+hyperparameter!

○ Must tune/configure for the best performance on domain-specific data

❖ Introduction
❖ Major techniques used in practice

➢ Bayesian Optimization
➢ Bandit-based methods
➢ Case studies: NAS and LLMs

❖ Data-driven algorithm design
➢ Learning-theoretic guarantees

➢ Distributional learning
➢ Online learning

❖ Tuning core ML algorithms
➢ Linear regression, decision trees
➢ Semi-supervised learning, neural networks

❖ Conclusion

5

Roadmap

❖ Introduction
❖ Major techniques used in practice

➢ Bayesian Optimization
➢ Bandit-based methods
➢ Case studies: NAS and LLMs

❖ Data-driven algorithm design
➢ Learning-theoretic guarantees

➢ Distributional learning
➢ Online learning

❖ Tuning core ML algorithms
➢ Linear regression, decision trees
➢ Semi-supervised learning, neural networks

❖ Conclusion

6

Roadmap

7

Hyperparameter tuning setup

● Tune hyperparameters such as learning rate, batch size, weight decay

● f(𝛼) = val_loss

● Baselines: grid search, random search

● Black box optimization (zeroth order optimization)

○ no gradient info; treat function as a “black box”

Hyperparam 1

H
y

p
er

p
a

ra
m

 2

Hyperparam 1

H
y

p
er

p
a

ra
m

 2

Grid search Random search

8

Bayesian Optimization

● Gaussian Process:

○ a collection of (infinitely many) random variables that are jointly Gaussian.

○ a distribution over functions – models noisy evaluation of some f(𝛼).
○ given by a mean function m(𝛼) and covariance k(𝛼, 𝛼’).

E[f(𝛼)] = m(𝛼).
E[(f(𝛼) – m(𝛼))(f(𝛼’) – m(𝛼’))] = k(𝛼, 𝛼’).

● Since all finite collections of function values are assumed

jointly Gaussian, the conditional distribution of any new

point given the observed points is also Gaussian,

i.e. posterior predictive mean and variance at 𝛼*, given

observed points 𝛢 is
μ(𝛼*) = K(𝛼*, 𝛢)K(𝛢, 𝛢)–1f(𝛢).
σ2(𝛼*) = K(𝛼*, 𝛼*) – K(𝛼*, 𝛢)K(𝛢, 𝛢)–1K(𝛢, 𝛼*).

μ(𝛼*)

𝛼*

σ2(𝛼*)

𝛢 = [𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5]

𝛼5

9

Bayesian Optimization

Acquisition function

● Trade off exploration

vs. exploitation

EI(𝛼)=E[max(0,fbest ​− f(𝛼))]

for i in {0, ..., n}:
// use GP to compute EI
select 𝛼* = max𝛼 EI(𝛼)
compute val_loss of 𝛼*

Bayesian optimization:

BO libraries: [Dragonfly: Kandasamy et al., JMLR 2020],

[SMAC3: Lindauer et al. JMLR 2022]
10

BO has its own hyperparameters!

Assumption on the smoothness of the function f(𝛼) = val_loss

(without this assumption, convergence is slow)
[Berkenkamp, Schoellig, Krause JMLR 2019]

[Frazier, 2022]

Random search with adaptive early stopping

Each arm has a noisy non-stationary reward

that eventually converges to a limiting value

1. Successive halving

2. Hyperband: multiple runs of successive

halving, across different hyper-

hyperparameters
11

Bandit-based approaches

[Jamieson, Talwalkar (AISTATS 2016)]
[Li, Jamieson, DeSalvo, Rostamizadeh,
Talwalkar (JMLR 2018)]

Given sets of hyperparameters 𝛢
for i in {0, ..., 3}:

run(𝛼, 10 * 2i), 𝛼∊A
𝛢 := top_k(𝛢, 16 * 2-i)

BOHB (BO + Hyperband):
Run Hyperband, but replace the
random selection of configurations at
the beginning of each iteration by a
model-based search

12

Other approaches and speedups

[Falkner, Klein, Hutter, ICML 2018]

Learning curve extrapolation:

Speed up HPO algorithms by

extrapolating partial learning curves

[Domhan, Springenberg, Hutter, IJCAI 2015]

13

Case study: Neural Architecture Search

[Kandasamy, Neiswanger, Schneider, Póczos, Xing, NeurIPS 2018]

Define the search space as a DAG with architecture components

(e.g. conv_3x3, conv_5x5, pool, fc)

● The search space is a critical decision [Li, Talwalkar, UAI 2019]

14

Case study: Neural Architecture Search (NAS)

[Tan, Le, ICML 2019]

● NAS has been used to achieve SotA on

imagenet seven times since 2017

● NAS has also been used to discover

efficient architectures such as EfficientNet

[paperswithcode.com/sota/image-classification-on-imagenet, 2022]

15

Large Language Models: Scaling Laws

● Scaling Laws for the ratio of tokens per parameter

○ Isoflop analysis: given a fixed compute budget, sweep over model sizes

○ Fit an empirical trend across small models -> scale up

[Kaplan et al, 2020], [Hoffmann et al, 2022]FLOPs ≈ 6 * (# params) * (# tokens)

16

Large Language Models: selecting learning rate using muP

Maximum Update

Parameterization (muP):

Parameterize the model

such that the learning rate

is same across all scales.

Then tune LR once.

● Width-dependent LR

● Width-dependent

weight initialization

● Width

[Yang, Hu, ICML 2021], [Yang et al., NeurIPS 2021]

Traditional LR scaling law: muP LR scaling law:

Limitations of popular HPO approaches in practice

● Theoretical guarantees typically need strong assumptions

● Need to tune hyper-hyper-parameters

● Overtuning (val loss is a proxy for generalization)

17

All approaches are black-box!! (agnostic to the structure of the function)

Practitioners rely heavily on empirical findings!

[Schneider, Bischl, Feurer, AutoML 2025]

❖ Introduction
❖ Major techniques used in practice

➢ Bayesian Optimization
➢ Bandit-based methods
➢ Case studies: NAS and LLMs

❖ Data-driven algorithm design
➢ Learning-theoretic guarantees

➢ Distributional learning
➢ Online learning

❖ Tuning core ML algorithms
➢ Linear regression, decision trees
➢ Semi-supervised learning, neural networks

❖ Conclusion

18

Roadmap

Machine Learning for Algorithm Design

Algorithms for solving combinatorial problems. E.g.,

• Clustering: organize an input set of items into natural groups.

• Pricing: price a set of items to maximize revenue.

Design and Analysis of Algorithms

• Subset selection: output most valuable subset of items

subject to capacity constraint.

Algorithm: (finite) sequence of precise step-by-step instructions to

solve a well specified class of problems.

Algorithms for solving combinatorial problems. E.g.,

Many problems typically hard in classic frameworks.

• clustering, partitioning

• pricing, auction design

Design and Analysis of Algorithms

Classic

Approach

1. Algorithm hand-designed, stroke of genius.

2. Worst-case analysis, one-problem instance.

• subset selection

Machine Learning for Algorithm Design

Data-driven algo design: use learning & data for algo design.

Recent Work: Data driven algos with provable guarantees.

Interesting tools, with implications to Hyperparameter Tuning.

Classic Work: largely empirical

AI, Computational Biology, Game Theory

• often repeatedly solve instances of the same algo problem.

[Horvitz-Ruan-Gomes-Kautz-Selman-Chickering, 2001]

[Xu-Hutter-Hoos-LeytonBrown, 2008]

[DeBlasio-Kececioglu, 2018]

[Likhodedov and Sandholm, 2004]

“Data-driven algorithm design”, M.F. Balcan, chapter in “Beyond the Worst-Case Analysis of Algorithms book, 2020.

20252000

Algorithm Design as Distributional Learning
Data-driven algo design: directly learn an algorithm (from a parametric family of

algos) that does well on instances from a given domain.

Large family 𝐅 of algorithms

Sample of typical inputs

MST

Greedy

Dynamic Programming

…

+

+ Farthest Location

Clustering:

Input 1 Input 2 Input m

Knapsack:

Pricing:

Input 1

𝑣1 C

𝑣1 M

𝑣1 C&M

…

𝑣𝑛 C

𝑣𝑛 M

𝑣𝑛 C&M

Input m

𝑣1 C

𝑣1 M

𝑣1 C&M

…

𝑣𝑛 C

𝑣𝑛 M

𝑣𝑛 C&M

…

…

…(v1s1), … , (vnsn), C (v1s1), … , (vnsn), C

dim 𝐅 (e.g. pseudo-dimension): ability of fns in 𝐅 to fit complex patterns

m = O dim 𝐅 /ϵ2 instances suffice for uniform convergence.

Overfitting
𝑦

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7

Training set

Tools from statistical learning theory

Algorithm Design as Distributional Learning

Sample Complexity: How large should training set be to guarantee that algos

that do well over training set do well on new instances?

Online Algorithm Selection

Run algorithm

on input:

Get Input:

Select Algorithm: A1

Get cost: cost1

A2

cost2

… Am

costm

Online alg. selection: instances arrive online, one by one

Guarantee: no regret - our cumulative performance comparable to performance of

best parameter setting (algorithm) in hindsight.

Input 1:
Gucci Tennis

Soccer

Baseball

Lacoste

Dior

Input 1:
Gucci Tennis

Soccer

Baseball

Lacoste

Dior

Input 2:

Dublin ACL

COLT

ICML

Pittsburgh

Bucharest

ACL

Bucharest

Dublin

Input 2:

COLT

ICML

Pittsburgh

Piano

Flute

Input m:

…
Tennis

Soccer

Football

Guitar

Input m:

…
Flute Tennis

Soccer

Football

Guitar

Piano

Provable Data-Driven Algo Design, Challenges

Learnability of more complex objects.

Key new techniques: structure of dual function classes.

Key Challenge: much more volatile losses.

case studies and general principles.Recent work:

Data-driven algorithm design: Problem Setup

• Fix an algorithmic pb (e.g., subset selection or clustering).

Let Alg be a family of algos, parameterized by set P ⊆ Rd; Aα the algo in

Alg parametrized by α ∈ P.

• Let Π be the set of problem instances for this problem.

• Fix a utility function u: Π × P → [0, H] where u(I, α) measures the performance

of algo Aα on problem instance I.

[Gupta-Roughgarden, ITCS’16 &SICOMP’17]

• uα: Π → [0, H] induced by Aα, where uα I = u(I, α) .

[Balcan, book chapter, 2020].

(can measure uα I of each algo Aα ∈ Alg on each input Ii)

• Specific domain: unknown input distribution D over Π.

• Learning algo uses m i.i.d. samples I1, I2, … Im ~D to find an algo Aα ∈ Alg for future

inputs from D.

• Goal: output an algo of Alg that performs almost as well as the optimal algorithm

Aα∗ ∈ Alg for D that maximizes

EI~D[uα (I)] over Aα ∈ Alg.

• Typical approach: pick ෡𝐀 that does well over the sample.

Sample Complexity: How large should training set be to guarantee that algos that do

well over training set do well on new instances?

Data-driven algorithm design: Problem Setup
[Gupta-Roughgarden, ITCS’16 &SICOMP’17] [Balcan, book chapter, 2020].

Data-driven algorithm design. Example: Knapsack Problem

Input: An instance I consists of n items (each item i has a value vi and a

size si), and knapsack capacity C.

Alg : greedy algos parametrized by P = R.

Output: select most valuable subset of items that fits. Find subset V to

maximize σi∈V vi subject to σi∈V si ≤ C.

u(I, α) = value of items chosen by the algo param. by α on I.

For α ∈ P, algo Aα:

• Set score of item i to be vi/si
α.

• In decreasing order of score, we add each item to the knapsack if there is

enough capacity left.

[Gupta-Roughgarden, ITCS’16 &SICOMP’17]

Data-driven algorithm design. Example: Partitioning Problems

Alg : greedy algos parametrized by P = R.

u(I, α) = clustering objective chosen by the algo α on I.

Input: set of objects S, d.

k-means clustering: min σp min
i

d2(p, ci)

k-center (facility location): min max radius.

Output: centers {c1, c2, … , ck}

1. Greedy linkage-based, get hierarchy.

2. Fixed algo (e.g., DP or last k-merges) to select a good pruning.

E.g., distα A, B = 1 − α SL + α max
x∈A,x′∈B

d(x, x′) soccer

sports fashion

Guccitennis Lacoste

All topics

[Balcan-Nagarajan-Vitercik-White, COLT’17] [Balcan-Dick-Lang, ICLR’20]

Uniform Convergence

m = O dim 𝐅 /ϵ2 suffices so that for any distribution D over Π, with prob.

at least 1 − δ over the draw I1, … , Im ~D, for all algos Aα∈ Alg,

𝔼I~D uα (I) −
1

m
෍

i=1

m

uα (Ii) ≤ ϵ

Uniform convergence: for any algo in Alg, average performance over samples

“close” to its expected performance.

• Imply that ෡𝐀 that does best over the sample has high expected performance.

Learning theoretic notion of dimension, e.g., pseudo-
dimension

Theorem

dim 𝐅 (e.g. pseudo-dimension): ability of fns in 𝐅 to fit complex patterns

m = O dim 𝐅 /ϵ2 instances suffice for uniform convergence.

Tools from statistical learning theory

Algorithm Design as Distributional Learning

Sample Complexity: How large should training set be to guarantee that algos that

do well over training set do well on new instances?

Overfitting
𝑦

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7

Training set

Theorem (informally)

Technique for analyzing dim(u𝛂 ⋅ ∶ param 𝛂) that takes advantage of the

structure of dual class uI ⋅ : instances 𝐈 .

General Sample Complexity via Dual Classes

[Balcan-DeBlasio-Kingsford-Dick-Sandholm-Vitercik, STOC 2021&JACM 2024]

Given u: Π × P → [0, H] , u(I, α) = performance of Aα on I.

• uα: Π → [0, H] induced by Aα, uα I = u(I, α) .

• uI: P → [0, H] induced by I, uI α = u(I, α) .

uI: instances 𝐈 dual class for of u𝛂 ⋅ ∶ param 𝛂

General Sample Complexity via Dual Classes

Key motivation: can often show uI is structured.

α ∈ ℝ

Critical points of the form
 log

vi
vj

log
si
sj

 , so O(n2) pieces.

Example: knapsack, greedy family Alg, uI piece-wise linear:

[Gupta-Roughgarden, ITCS’16 &SICOMP’17]

Theorem (informally)

Technique for analyzing dim(u𝛂 ⋅ ∶ param 𝛂) that takes advantage of the

structure of dual class uI ⋅ : instances 𝐈 .

[Balcan-DeBlasio-Kingsford-Dick-Sandholm-Vitercik, STOC 2021&JACM 2024]

Example: clustering, parametrized-linkage, uI piece-wise linear

[Balcan-Nagarajan-Vitercik-White, COLT’17] [Balcan-Dick-Lang, ICLR’20]

1. Greedy linkage-based, get hierarchy.

2. Fixed algo to select a good pruning.
soccer

sports fashion

Guccitennis Lacoste

All topics

E.g., distα A, B = 1 − α SL + α max
x∈A,x′∈B

d(x, x′)

General Sample Complexity via Dual Classes

α ∈ ℝ

Roots of linear eqs where we merge one pair vs another pair of clusters.

Theorem (informally)

Technique for analyzing dim(u𝛂 ⋅ ∶ param 𝛂) that takes advantage of the

structure of dual class uI ⋅ : instances 𝐈 .

[Balcan-DeBlasio-Kingsford-Dick-Sandholm-Vitercik, STOC 2021&JACM 2024]

General Sample Complexity via Dual Classes

𝑠

IQP
objective

value

[Balcan-Nagarajan-Vitercik-White, COLT 2017]

SDP + s-linear rounding

α ∈ ℝ

Posted Pricing, Two-Part Tariffs,

Parametrized VCG auctions, etc.

Price M
Pr

ic
e

C

M

CC, M

[Balcan-Sandholm-Vitercik, EC’18]

Decision boundary where the buyer prefers one

bundle over the other, is a hyperplane.

[Balcan-Beyhaghi, TMLR’24]

Key motivation: can often show uI is structured.

Partitioning Pbs via IQPs

Theorem (informally)

Technique for analyzing dim(u𝛂 ⋅ ∶ param 𝛂) that takes advantage of the

structure of dual class uI ⋅ : instances 𝐈 .

[Balcan-DeBlasio-Kingsford-Dick-Sandholm-Vitercik, STOC 2021&JACM 2024]

VC-dimension (for binary valued classes)

VC-dimension of a function class H is the cardinality of the largest set S that

can be labeled in all possible ways 2|S| by H.

[If arbitrarily large finite sets can be shattered by H, then VCdim(H) = ∞]

E.g., H= linear separators in 𝐑𝟐:

VCdim H ≥ 3

VCdim(H) = 3

VCdim H < 4

E.g., H= linear separators in 𝐑𝐝: VCdim(H) = d+1

The pseudo-dimension [Pollard 1984] of a function class F is the cardinality of

the largest set S = {x1, … , xm} and thresholds y1, … , ym s.t. all 2m above/below

patterns can be achieved by functions f ∈ F.

• E.g., m = 2, there should exist f1 ∈ F s.t. f1 x1 < y1, f1 x2 < y2; f2 ∈ F s.t. f2 x1 > y1,
f2 x2 < y2; f3 ∈ F s.t. f3 x1 < y1, f3 x2 > y2, and f4 ∈ F s.t. f4 x1 > y1, f4 x2 > y2

Pseudo-dimension (for real valued classes)

Equivalently, the pseudo-dimension of F is the VC dim of the class of “below-

the-graph” indicator functions Bf x, y = sgn f x − y : f ∈ F

Pseudo-dimension, Uniform Convergence

For any δ ∈ (0,1) and any distribution 𝒟 over 𝒳, with probability 1 − δ over the draw x1, … , xm ~𝒟m, for all

functions f ∈ F,

𝔼x~𝒟 f x −
1

m
෍

i=1

m

f xi = O U
𝐏𝐝𝐢𝐦(𝓕)

m
+ U

log(1/δ)

m
,

where U is the maximum f(x) for any f ∈ F and x in the support of 𝒟.

Uniform convergence guarantees [Pollard‘84; Dudley ‘67]

The pseudo-dimension [Pollard 1984] of a function class F is the cardinality of

the largest set S = {x1, … , xm} and thresholds y1, … , ym s.t. all 2m above/below

patterns can be achieved by functions f ∈ F.

General Sample Complexity via Dual Classes

Theorem

Suppose for each uI(α) there are ≤ N boundary fns f1, f2, … ∈ F s. t within each region

defined by them, ∃ g ∈ G s.t. uI α = g(α).

dF∗ = VCdim of dual of F, dG∗ =Pdim of dual of G.

[Balcan-DeBlasio-Kingsford-Dick-Sandholm-Vitercik, STOC 2021&JACM 2024]

dF∗ =VCdim (F∗)

dG∗ =Pdim(G∗)

f ∈ F

g ∈ G

Pdim uα I = ෩O dF∗ + dG∗ + dF∗ log N

• Fix D instances I1, … , ID and D thresholds z1, … , zD. Bound # sign patterns (uα I1 , … , uα ID) ranging over

all α.

Proof insights:

Equivalently, (uI1
α , … , uID

α).

• Use VCdim of F∗ , bound # of regions induced by uI1
α , … , uI𝐷 α : eND dF∗ .

• On a region, exist gI1
, … , gID

 s.t.,(uI1
α , … , uID

α) = (gI1
α , … , gID

α), which equals 𝛼 𝑔𝐼1
, … , 𝛼 𝑔𝐼𝐷

.

These are fns in dual class of G. Sauer’s lemma on G∗, bounds # of sign patterns in that region by eD dG∗ .

• Combining, total of eND dF∗ eD dG∗ . Set to 2D and solve.

General Sample Complexity via Dual Classes

Theorem

Suppose for each uI(α) there are ≤ N boundary fns f1, f2, … ∈ F s. t within each region

defined by them, ∃ g ∈ G s.t. uI α = g(α).

dF∗ = VCdim of dual of F, dG∗ =Pdim of dual of G.

[Balcan-DeBlasio-Kingsford-Dick-Sandholm-Vitercik, STOC 2021&JACM 2024]

Pdim uα I = ෩O dF∗ + dG∗ + dF∗ log N

• Optimal parameters vary across different distributions.

• Choosing the parameter can give large improvements to loss; improvements over SL

and CL by interpolating between them.

Different Algos Work in Different Settings

Cifar10 MNIST

Omniglot Rings and Discs

[Balcan-Dick-Lang, ICLR’20]

Goldberg-Jerrum (GJ) Framework

GJ (95) Procedure ΓI,z if

then else

then else
True False

𝐩𝟏
𝐈,𝐳(𝛂)

𝐪𝟏
𝐈,𝐳(𝛂)

≥ 𝟎

if if

if

𝐩𝟐
𝐈,𝐳(𝛂)

𝐪𝟐
𝐈,𝐳(𝛂)

≥ 𝟎 𝐩𝟑
𝐈,𝐳(𝛂)

𝐪𝟑
𝐈,𝐳(𝛂)

≥ 𝟎

𝐩𝚷
𝐈,𝐳(𝛂)

𝐪𝚷
𝐈,𝐳(𝛂)

≥ 𝟎

Theorem [Bartlett, Indyk, Wagner. COLT’22] Assume α ∈ Rn, i.e. each Aα ∈ Alg has n real param.

For any I and z, there is a GJ procedure ΓI,z that determines for all α if uI(α) ≥ z by

evaluating Π distinct predicates (ratios of polys) with max. degree Δ. Then:

Pdim uα I = O(n log(ΔΠ))

Theorem [Balcan, Ngyuen, Sharma, TMLR’25] Assume α ∈ Rn, i.e. each Aα ∈ Alg has n real param.

For any instance I and threshold z, there is a Pfaffian GJ algorithm ΓI,z that determines

for all α if uI(α) ≥ z by evaluating Π distinct Pfaffian predicates with Pfaffian chain length

q, degree Δ, and Pfaffian degree M.

Pdim uα I = O n2q2 + nqln Δ + M + n ln Π

Goldberg-Jerrum (GJ) Framework

Theorem [Bartlett, Indyk, Wagner. COLT’22] Assume α ∈ Rn, i.e. each Aα ∈ Alg has n real param.

For any I and z, there is a GJ procedure ΓI,z that determines for all α if uI(α) ≥ z by

evaluating Π distinct predicates (ratios of polys) with max. degree Δ. Then:

Pdim uα I = O(n log(ΔΠ))

Online Algorithm Selection

Guarantee: no regret - cumulative performance of learner comparable to performance of

best algorithm from the family in hindsight.

Challenge: loss functions volatile.
α ∈ ℝ

[Balcan-Dick-Vitercik, FOCS’18], [Balcan-Dick-Pedgen, UAI’20]

Few boundaries within any

interval

Not dispersed

Many boundaries within interval

Dispersed

Our contribution: identify general properties (piecewise Lipschitz fns with dispersed

discontinuities) sufficient for no regret guarantees.

Instances arrive online, one by one.

Full info: exponentially weighted forecaster [Cesa-Bianchi-Lugosi 2006]

No Regret Guarantees:

pt 𝜶 ∝ exp λ ෍

s=1

t−1

us 𝜶

Disperse fns, regret ෩O Td fnc of problem) .

On each round t ∈ 1, … , T :

• Sample 𝜶t from distr. pt:

Dispersion, Sufficient Condition for No-Regret

Disperse

density of 𝛼 exponential in its

performance so far

[Balcan-Dick-Vitercik, FOCS’18], [Balcan-Dick-Pedgen, UAI’20]

Key Questions

• How do we tune algos, to achieve best performance for a given domain,

with provable guarantees?

• Data driven algo design as distributional learning

• Data driven algo design as online learning

[Balcan-Dick-Vitercik, FOCS’18],

Disperse fns, regret ෩O Td fnc of pb) .

[Balcan-Dick-Pegden, UAI’20], [Balcan-Sharma, NeurIPS 2021]

• What are interesting tunable families of algos?

Suffices to show that dual class uI ⋅ : instances 𝐈 is structured.

Who designs good machine learning algorithms?

• How do we tune machine learning algorithms with

provable guarantees?

• What are interesting tunable families of algos?

• Often hand-designed, with tunable parameters.

❖ Introduction
❖ Major techniques used in practice

➢ Bayesian Optimization
➢ Bandit-based methods
➢ Case studies: NAS and LLMs

❖ Data-driven algorithm design
➢ Learning-theoretic guarantees

➢ Distributional learning
➢ Online learning

❖ Tuning core ML algorithms
➢ Linear regression, decision trees
➢ Semi-supervised learning, neural networks

❖ Future research

19

Roadmap

Given instance

Regularized linear regression

L1 (LASSO):

L2 (Ridge):

[Tibshirani 96]

[Hoerl & Kennard 70]

β2 β2

β1β1

β*
β*

contours

m: number of examples
Xi*: regressor, p features
yi: regressand or dependent variable

Regularized linear regression

bad if m < p not sparse

(X, y) ∈ ℝm x p x ℝm

βL1 = argmin β ∈ ℝm x p ‖y – Xβ‖2 +λ‖β‖1

βL2 = argmin β ∈ ℝm x p ‖y – Xβ‖2 +λ‖β‖2
2

Given dataset

Regularized linear regression

Elastic net: [Zou & Hastie 05]

Q: How to set hyperparameter 𝛼 = (λ1, λ2) for given dataset?

A: Use a hold out dataset, a grid of parameter values, minimize sq-error on held-out set

(X, y)

(X1, y1) (X2, y2)

Find βEN for

each λ1, λ2
(i) (j)

Find λ1, λ2

to minimize

‖y2 – X2βEN‖2

(i) (j)

m: number of examples
Xi*: regressor, p features
yi: regressand or dependent variable

Regularized linear regression

Objective

selection

βEN = argmin β ∈ ℝm x p ‖y – Xβ‖2 +λ1‖β‖1 + λ2‖β‖2
2

(X, y) ∈ ℝm x p x ℝm

n instances of the regression problem

mi ,mi’ ≤ m, pi ≤ p.

I1 I2 I3
…

Multiple instances

Ii = (X(i), y(i), Xv
(i), yv

(i)) ∈ ℝmi x p x ℝmi x ℝm’i x p x ℝm’i

n instances of the regression problem

mi ,mi’ ≤ m, pi ≤ p.

I1 I2 I3
…

loss(P) =

fit on

using predicted

Multiple instances

Ii = (X(i), y(i), Xv
(i), yv

(i)) ∈ ℝmi x p x ℝmi x ℝm’i x p x ℝm’i

I1

I2

I3

.

Hyperparameter

tuning algorithm

Instances

(drawn from D)
Test instance

(drawn from D)

I =

(Xtrain, ytrain, Xval, yval)

λ

Fit β on Xtrain, ytrain

with reg. coeff. λ

Compute

validation loss for

β on Xval, yval
..

Multiple instances

25

Elastic Net [Balcan, Khodak, Sharma and Talwalkar, NeurIPS’22, Balcan, Nguyen, Sharma, NeurIPS’23]

Example application: Tuning Elastic Net coefficients.

Input: Training data X, y and validation data X’, y’.
Goal: Tune λ, λ’ to minimize dual validation loss + L0 terms (AIC/BIC).

Challenge: sharp transition boundaries, due to L0 terms in AIC/BIC validation loss.

Lemma: The dual validation loss is piecewise decomposable in the λ, λ’ space with

– at most d3d algebraic boundaries of degree at most d,

– at most 3d distinct piece functions, each a rational function with degree at most 2d.

minw ||Xw – y||2 + λ||w||2 + λ’||w||1

26

Theorem: Sample complexity of tuning λ, λ’ is O(d/ε2).

Lemma: The dual validation loss is piecewise decomposable in the λ, λ’ space with

– at most d3d algebraic boundaries of degree at most d,

– at most 3d distinct piece functions, each a rational function with degree at most 2d.

Proof sketch:

1. Elastic net is equivalent to a lasso for some modified
datasets X’,y’ that depend on the ridge coefficient.

2. Lasso has a piecewise linear solution in terms of the L1

penalty with known conditions for critical points.
3. 1+2 gives polynomial boundary functions and rational

piece functions in terms of both the coefficients.

Elastic Net [Balcan, Khodak, Sharma and Talwalkar, NeurIPS’22, Balcan, Nguyen, Sharma, NeurIPS’23]

Trees for classification:

- Each internal node ⇔ Splitting rule

- Each leaf node ⇔ Single Class

Interpretable ML models

- axis-parallel decision boundaries

- Neural nets are hard to interpret

Smoke

?

Age

> 30

Age

> 50

YES NO

YES YES NONO

Screen

lungs

Do

nothing

Screen

lungs

Do

nothing

Hard to learn optimal trees, but several useful heuristics!

Decision Trees

Hardness of DT learning

- NP-complete. [Laurent and Rivest (1976)]

- Superconstant Inapproximability of Decision Tree Learning.

[Koch et al. COLT 2024] [Koch and Strassle FOCS 2023, FOCS 2024]

Faster optimal decision trees (speed up the exp time branch-and-bound algorithm)

- [Hu et al. NeurIPS 2019]

- [McTavish et al. AAAI 2022]

- [Babbar et al. ICML 2025] (combines greedy with branch-and-bound)

Learning optimal decision trees is hard!

Alternative: data-driven formulation,
instances I : labeled datasets, utility u(I, α) : avg. acc. on instance I

Top-down decision tree learning

Inputs: Node function class , tree size t,

splitting criterion G

● Start with leaf node

Splitting criterion

Top-down decision tree learning

Inputs: Node function class , tree size t,

splitting criterion G

● Start with leaf node

● While at most t leaf nodes
○ Split leaf node l using node function f

which maximizes “splitting criterion”

Splitting criterion

Top-down decision tree learning

Inputs: Node function class , tree size t,

splitting criterion G

● Start with leaf node

● While at most t leaf nodes
○ Split leaf node l using node function f

which maximizes “splitting criterion”

Smoke

?

YES NO

Screen

lungs

Do

nothing

Splitting criterion

= {Smoke, Age >30, Age >50}

Top-down decision tree learning

Inputs: Node function class , tree size t,

splitting criterion G

● Start with leaf node

● While at most t leaf nodes
○ Split leaf node l using node function f

which maximizes “splitting criterion”

Smoke

?

YES NO

Screen

lungs

Age

> 50

YES

Screen

lungs

NO

Do

nothing

Key decision: Which node to split next

and how? ⇒ splitting criterion

= {Smoke, Age >30, Age >50}

Splitting criterion

Top-down decision tree learning

Inputs: Node function class , tree size t,

splitting criterion G

Splitting criterion (a greedy approach)

Overall algorithm: Greedy approach to growing a decision tree top-

down (from the root to leaves by repeatedly replacing an existing leaf

with an internal node based on a “splitting criterion”).

Algorithm family: interpolation of popular splitting criteria.

F : binary functions for labeling internal nodes: features → {left, right}

G: uses how the current tree partitions the data into different classes to
determine which node to split next and using with function in F

w(l): number of datapoints that map to leaf l
pi(l): fraction of them labeled i

Splitting criterion

Empirical research suggests different criteria work best on different data [Mingers 1989]

● Entropy criterion (CART)

● Gini impurity (ID3)

● Kearns Mansour 96

(α, β)-Tsallis entropy

A single criterion which interpolates all three!

Splitting criterion

Family of top-down DT learning algorithms

[Balcan and Sharma (UAI 2024)]

Gini impurity

KM96

Entropy

Theorem: We can learn to tune (α, β) using. problem samples.

Splitting criterion [Balcan and Sharma (UAI 2024)]

Theorem: We can learn to tune (α, β) using problem samples.

Proof insights:
● Uses dual function (accuracy as a function of (α, β) on a fixed

instance (X, y)) analysis

○ Dual function is piecewise-constant with boundaries given by
exponential equations in (α, β):

● Induction over top-down rounds, bounding the number of distinct

behaviors (which node is split and how) in each round
● Over t rounds, Õ(|F |2tt2t) distinct behaviors, which implies pseudo-

dimension is O(t log |F |t).

Splitting criterion [Balcan and Sharma (UAI 2024)]

Splitting-criterion in XGBOOST [Chen and Guestrin (2016)]:

- Across all nodes of all trees in the ensemble, split the one that maximizes a

score based on first and second order gradients

Regularized objective over a collection of K trees (size at most t),
L({Ti}, D) = l({Ti}, D) + ½ λ ∑k ||weights of leaves in Tk||

2

Gradient-boosted decision trees

State-of-the-art approach for tabular datasets!
[McElfresh et al. (NeurIPS 2023), Jayawardhana et al. (2025)]

Key idea: show piecewise-constant dual with polynomial boundaries

[Balcan and Sharma (ArXiv 2025)]

Splitting-criterion in XGBOOST [Chen and Guestrin (2016)]:

- Across all nodes of all trees in the ensemble, split the one that maximizes a

score based on first and second order gradients

Regularized objective over a collection of K trees (size at most t),
L({Ti}, D) = l({Ti}, D) + ½ λ ∑k ||weights of leaves in Tk||

2

Gradient-boosted decision trees

There are at most tK|F | different candidate splits, or at most t2K2|F |2 pairs
Also over the course of XGBOOST, we have at most tK splits.

⇒ Computable using a GJ algorithm with at most (t2K2|F |2)tK predicates (degree 6)

⇒ Pdim(U) = O(tK log(tK|F |))

[Balcan and Sharma (ArXiv 2025)]

❖ Introduction
❖ Major techniques used in practice

➢ Bayesian Optimization
➢ Bandit-based methods
➢ Case studies: NAS and LLMs

❖ Data-driven algorithm design
➢ Learning-theoretic guarantees

➢ Distributional learning
➢ Online learning

❖ Tuning core ML algorithms
➢ Linear regression, decision trees
➢ Semi-supervised learning, neural networks

❖ Conclusion

40

Roadmap

★ Repeated problems e.g. emails on an email server, spam vs. non-spam

Day 1 Day 2 Day 3

[Balcan and Sharma (NeurIPS 2021)]

41

Goal: learn how to connect points using a graph s.t. a (hard or soft) min-cut yields accurate predictions

Example: Semi-Supervised Learning

★ Graph edges are set using some kernel with hyperparameters

○ Polynomial kernel: (〈f(u), f(v)〉 + 𝛼)d

○ RBF kernel: exp(–d(u, v)2/𝜎2)
★ Instances I: partially labeled datasets; Utility: average accuracy of graph SSL

Piecewise-constant dual function with boundaries given by poly/exp equations

Day 1 Day 2 Day 3

[Balcan and Sharma (NeurIPS 2021)]

42

Example: Semi-Supervised Learning

Day 1 Day 2 Day 3

[Balcan and Sharma (NeurIPS 2021)]

43

Goal: learn how to connect points using a graph s.t. a (hard or soft) min-cut yields accurate predictions

○ statistical learning: tight upper+lower bounds on learning-theoretic complexity

○ online learning: no regret by showing critical points are dispersed; primal-dual

algorithm for computing pieces exactly;

○ faster approx pieces using conjugate gradient method [Sharma and Jones, UAI 2023]

Example: Semi-Supervised Learning

44

Refined GJ Framework [Bartlett, Indyk, Wagner, COLT’22]

Theorem: Sample complexity of tuning IVY is O(mn/ε2).

Example application: Low-rank approximation.

Inst, I: Given a sparse matrix with , target rank k < n.

Goal: Sparse matrix with rank k that minimizes (approximates A well).

Exact algorithm based on SVD (singular value decomposition) is inefficient!

Faster algorithm IVY [Indyk, Vakilian, Yuan ’19] is family of parameterized heuristics

uses a m x n auxiliary matrix (runtime nearly linear in #non-zero entries!).

Low-rank approximation [Bartlett, Indyk, Wagner, COLT 2022]

Regularizing linear (Elastic Net) and logistic regression [BKST NeurIPS 2022, BNS NeurIPS

2023, BGS 2025]

Simulated Annealing [Blum, Dan, Seddighin, AISTATS 2021]

Learning to branch and cut [Balcan, Dick, Sandholm, Vitercik, ICML 2018, JACM 2024]

Clustering (both k-center and hierarchical) [BNVW COLT 2017, BDW NeurIPS 2018, BDL ICLR 2020]

Gradient descent [Gupta and Roughgarden, ITCS 2016]

Integer and Linear Programming [Balcan et al., Khodak et al., Cheng and Basu, Sakaue and Oki (2024)]

45

Applications [ML, stats, optimization]

Knapsack, Maximum Weighted Independent Set [Gupta and Roughgarden, ITCS 2016, Balcan et

al., FOCS 2018, Sun et al. 2022]

Max cut, Max 2-SAT [Balcan et al., COLT 2017]

Dynamic Programming, Sequence Alignment [Balcan et al., COLT 2017, STOC 2021, NeurIPS 2024]

Mechanism and game design [Balcan et al., EC18, NeurIPS 24, Jin et al. NeurIPS 24, Dütting et al. EC 2025]

Energy and climate science [Mathioudaki et al., 2023, Bostandoost et al. 2024]

46

More applications [CS theory, Comp bio, Mech design, Energy …]

○ Parametric ReLU activation function

● Hyperparameter space A = [αmin, αmax] ⊂ ℝ (hyperparameter α)

● Model parameter space W ⊂ ℝ (parameters/weights w)

Tuning deep networks: parameters and hyperparameters

*inspired by DARTS approach for Neural Architecture Search [Liu et al. ICLR’19]
47

fixed during training

updated during training

● Example (learning activation functions):

○ Consider a DNN τα,w with model weights w = (w1, …, wL)

○ More generally, one can interpolate* any activation functions

σ(z) = α o1(z) + (1 – α) o2(z)
where o1, o2 are common activation functions, α is interpolation hyperparameter

48

Model vs optimization hyperparameters

“Model” or “architectural”

hyperparameters

“Optimization”

hyperparameters

Impact learned weights w YES YES

Are part of: learned deep network τα,w optimization algorithm

Examples activation function

hyperparameters, kernel
parameters

learning rate,

learning schedule,
momentum

49

Tuning deep network hyperparameters

Sample complexity of data-driven tuning of model hyperparameters (e.g.

activation fns, GNN kernels) with p/w poly parameter-dependent dual fn

u*x(α) := uα(x) = supw fx(α, w)
new techniques to bound discontinuities and

oscillations of dual

Poly surface depicting parameter-dependent

dual fx(α, w) and piecewise structure of dual

Instances I: labeled datasets; utility: avg acc

[Balcan, Nguyen, Sharma, 2025]

Learning the interpolated activation function

● DNN τα,w with L layers

● Layer i: Wi params (total W), ki nodes (total k)

● σ(z) = α o1(z) + (1 – α) o2(z) , where o1, o2 piecewise poly.

with max degree Δ, p breakpoints

● T samples (not assumed iid) in each problem instance

50

Learning the interpolated activation function

51

For the activation function interpolation:

Pdim(U) = O(L2W log Δ + LW log(Tpk))
Application:

Theorem (informal): Pdim(U) = O(log M + d log(ΔN)), where

M is the number of connected components

N is the number of boundaries

d is the dimension of w

Δ is the maximum polynomial degree

Open Q: Improve?

[Balcan, Nguyen, Sharma, 2025]

Gradient descent algorithm: Instance is (x, f), loss = num steps till convergence.

Inputs: initial point x, iterations H, threshold θ. Hyperparameter: learning rate η

Output: xi

52

Tuning learning rate in gradient descent

Prior work by Gupta and Roughgarden (2016):

Assumes: f is convex and smooth

Sample complexity of tuning learning rate is O(H3/ε2)

We get O(H3/ε2) sample complexity even for

non-convex non-smooth functions in deep

networks! Open Q: Improve?

[Sharma, 2025]

Learning from small-samples

53

Can we figure out how to find the good hyperparameters for larger datasets/models based

on learning good hyperparameters for smaller datasets/models?

[Chatziafratis, Karmarkar, Li and Vitercik, 2025] give some initial answers for algorithm selection

in clustering

Open Q:

Neural Networks?

LLMs scaling laws?

Algorithms with Predictions

54

A new approach to designing algorithms, with predictions from machine learning
• Clustering [Ergun et al. ICLR 2022, Silwal et al. ICLR 2023, Braverman et al. arXiv 2025]

• Graph algorithms [Dinitz et al. 2021, Chen et al. ICML 2022, Aamand et al. arXiv 2025]

• Many, many more [350+ recent papers https://algorithms-with-predictions.github.io/]

Open Q:

Learning-augmented

hyperparameter tuning?

Hot research topic, but how do we actually learn the predictions? [Khodak et al. NeurIPS 2022]

❖ Introduction
❖ Major techniques used in practice

➢ Bayesian Optimization
➢ Bandit-based methods
➢ Case studies: NAS and LLMs

❖ Data-driven algorithm design
➢ Distributional learning
➢ Online learning

❖ Tuning core ML algorithms
➢ Linear regression, decision trees
➢ Semi-supervised learning, neural networks

❖ Conclusion

55

Roadmap

● Last ~20 years:

○ Explosive growth in powerful ML algorithms and their range of applications

○ New practically successful approaches to algorithm design

● Last 10 years:
○ Machine learning for algorithm design acquired solid foundations in

learning theory

● Last 5 years:

○ Hyperparameter tuning is rapidly transforming from an art to a principled
science

56

Conclusion

● Other applications to tuning important hyperparameters and algorithms

● Focus on statistical complexity computationally efficient methods?

● Making currently used approaches in practice more structure-aware

● Beyond the worst-case complexity: distribution-dependent bounds

● More challenging high-dimensional and distributed settings

○ E.g. extend our model hyperparameter tuning result to multiple
hyperparameters

57

Next five years and beyond …

● For essentially all ML algorithms of interest, we will know how to provably

configure hyperparameters

● ML can be used to solve its own problems of robustness, interpretability and

trustworthiness

● Reliable and safe use of AI is going to be critical

○ We require more from generative AI

○ Data-driven approaches are promising candidates

● ML-designed algorithms for ML can unlock as-yet untapped potential

58

Next five years and beyond …

59

Questions and transition to panel…

Linear

regression

Ridge/Lasso penalties

Logistic

regression

L1, L2 regularization

penalties

Decision

Tree

splitting criterion,

pruning cost, max depth

k-Nearest

neighbors

k, weights, metric,

abstention threshold

Support Vector

Machines

C, kernel, gamma

Neural

Networks

activation function,

learning schedule, …

References

60

[1] Mockus, Jonas. "The Bayesian approach to local optimization." In Bayesian approach to global optimization: Theory and applications, pp. 125-156.

Dordrecht: Springer Netherlands, 1989.

[2] Linial, Nathan, Yishay Mansour, and Noam Nisan. "Constant depth circuits, Fourier transform, and learnability." Journal of the ACM (JACM) (1993).

[3] Srinivas, Niranjan, Andreas Krause, Sham Kakade, and Matthias Seeger. "Gaussian Process Optimization in the Bandit Setting: No Regret and

Experimental Design." In Proceedings of the 27th International Conference on Machine Learning , pp. 1015-1022. Omnipress, 2010.

[4] Bergstra, James, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. "Algorithms for hyper-parameter optimization." Advances in neural information

processing systems 24 (2011).

[5] Maclaurin, Dougal, David Duvenaud, and Ryan Adams. "Gradient-based hyperparameter optimization through reversible learning." In International

conference on machine learning, pp. 2113-2122. PMLR, 2015.

[6] Domhan, Tobias, Jost Tobias Springenberg, and Frank Hutter. "Speeding up automatic hyperparameter optimization of deep neural networks by

extrapolation of learning curves." In IJCAI, vol. 15, pp. 3460-8. 2015.

[7] Gupta, Rishi, and Tim Roughgarden. "A PAC approach to application-specific algorithm selection." In Proceedings of the 2016 ACM Conference on

Innovations in Theoretical Computer Science, pp. 123-134. 2016.

[8] Jamieson, Kevin, and Ameet Talwalkar. "Non-stochastic best arm identification and hyperparameter optimization." In Artificial intelligence and statistics, pp.

240-248. PMLR, 2016.

[9] Finn, Chelsea, Pieter Abbeel, and Sergey Levine. "Model-agnostic meta-learning for fast adaptation of deep networks." In International conference on

machine learning, pp. 1126-1135. PMLR, 2017.

References

61

[10] Frazier, Peter I. "A tutorial on Bayesian optimization." arXiv preprint arXiv:1807.02811 (2018).

[11] Balcan, Maria-Florina, Travis Dick, and Ellen Vitercik. "Dispersion for data-driven algorithm design, online learning, and private optimization." In 2018

IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pp. 603-614. IEEE, 2018.

[12] Franceschi, Luca, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil. "Bilevel programming for hyperparameter optimization

and meta-learning." In International conference on machine learning, pp. 1568-1577. PMLR, 2018.

[13] Li, Lisha, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. "Hyperband: A novel bandit-based approach to

hyperparameter optimization." Journal of Machine Learning Research 18, no. 185 (2018): 1-52.

[14] Falkner, Stefan, Aaron Klein, and Frank Hutter. "BOHB: Robust and efficient hyperparameter optimization at scale." In International conference on

machine learning, pp. 1437-1446. PMLR, 2018.

[15] Balcan, Maria-Florina, Travis Dick, Tuomas Sandholm, and Ellen Vitercik. "Learning to branch." In International conference on machine learning, pp.

344-353. PMLR, 2018.

[16] Kandasamy, Kirthevasan, Willie Neiswanger, Jeff Schneider, Barnabas Poczos, and Eric P. Xing. "Neural architecture search with bayesian

optimisation and optimal transport." Advances in neural information processing systems 31 (2018).

[17] Hazan, Elad, Adam Klivans, and Yang Yuan. "Hyperparameter Optimization: A Spectral Approach." ICLR (2018).

[18] Liu, Hanxiao, Karen Simonyan, and Yiming Yang. "DARTS: Differentiable Architecture Search." In International Conference on Learning

Representations, 2019.

62

[19] Berkenkamp, Felix, Angela P. Schoellig, and Andreas Krause. "No-regret Bayesian optimization with unknown hyperparameters." Journal of

Machine Learning Research 20, no. 50 (2019): 1-24.

[20] Tan, Mingxing, and Quoc Le. "Efficientnet: Rethinking model scaling for convolutional neural networks." In International conference on machine

learning, pp. 6105-6114. PMLR, 2019.

[21] Feurer, Matthias, and Frank Hutter. Hyperparameter optimization. Springer International Publishing, 2019.

[22] Li, Liam, and Ameet Talwalkar. "Random search and reproducibility for neural architecture search." In Uncertainty in artificial intelligence, pp. 367-

377. PMLR, 2020.

[23] Maria-Florina Balcan. Data-Driven Algorithm Design. In Tim Roughgarden, editor, Beyond the Worst-Case Analysis of Algorithms. Cambridge

University Press, 2020.

[24] Kandasamy, Kirthevasan, Karun Raju Vysyaraju, Willie Neiswanger, Biswajit Paria, Christopher R. Collins, Jeff Schneider, Barnabas Poczos, and

Eric P. Xing. "Tuning hyperparameters without grad students: Scalable and robust bayesian optimisation with dragonfly." Journal of Machine Learning

Research 21, no. 81 (2020): 1-27.

[25] Balcan, Maria-Florina, Travis Dick, and Manuel Lang. "Learning to Link." In International Conference on Learning Representation. 2020.

[26] Lin, Jimmy, Chudi Zhong, Diane Hu, Cynthia Rudin, and Margo Seltzer. "Generalized and scalable optimal sparse decision trees. " In International

conference on machine learning, pp. 6150-6160. PMLR, 2020.

[27] Kaplan, Jared, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario

Amodei. "Scaling laws for neural language models." arXiv preprint arXiv:2001.08361 (2020).

References

References

63

[28] Balcan, Maria-Florina, Travis Dick, and Manuel Lang. "Learning to Link." In International Conference on Learning Representation. 2020.

[29] Parker-Holder, Jack, Vu Nguyen, and Stephen J. Roberts. "Provably efficient online hyperparameter optimization with population-based bandits."

Advances in neural information processing systems 33 (2020): 17200-17211.

[30] Maria-Florina Balcan, Travis Dick, and Dravyansh Sharma. "Learning piecewise Lipschitz functions in changing environments." In International

Conference on Artificial Intelligence and Statistics, pp. 3567-3577. PMLR, 2020.

[31] Balcan, Maria-Florina, and Dravyansh Sharma. "Data driven semi-supervised learning." NeurIPS (2021): 14782-14794.

[32] Balcan, Maria-Florina, Dan DeBlasio, Travis Dick, Carl Kingsford, Tuomas Sandholm, and Ellen Vitercik. "How much data is sufficient to learn high-

performing algorithms? Generalization guarantees for data-driven algorithm design." Symposium on Theory of Computing (STOC), 2021.

[33] Blum, Avrim, Chen Dan, and Saeed Seddighin. "Learning complexity of simulated annealing." In International conference on artificial intelligence and

statistics, pp. 1540-1548. PMLR, 2021.

[34] Yang, Greg, and Edward J. Hu. "Tensor programs iv: Feature learning in infinite-width neural networks." In International Conference on Machine

Learning, pp. 11727-11737. PMLR, 2021.

[35] Balcan, Maria-Florina, Mikhail Khodak, Dravyansh Sharma, and Ameet Talwalkar. "Learning-to-learn non-convex piecewise-Lipschitz functions."

Advances in Neural Information Processing Systems 34 (2021): 15056-15069.

[36] Bartlett, Peter, Piotr Indyk, and Tal Wagner. "Generalization bounds for data-driven numerical linear algebra." In Conference on Learning Theory,

2022.

[37] Balcan, Maria-Florina, Mikhail Khodak, Dravyansh Sharma, and Ameet Talwalkar. "Provably tuning the ElasticNet across instances." Advances in

Neural Information Processing Systems 35 (2022): 27769-27782.

References

64

[38] Sun, Bo, Lin Yang, Mohammad Hajiesmaili, Adam Wierman, John CS Lui, Don Towsley, and Danny HK Tsang. "The online knapsack problem with

departures." Proceedings of the ACM on Measurement and Analysis of Computing Systems 6, no. 3 (2022): 1-32.

[39] Hoffmann, Jordan, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza Rutherford, Diego de Las Casas et al. "Training

compute-optimal large language models." arXiv preprint arXiv:2203.15556 (2022).

[40] Lindauer, Marius, Katharina Eggensperger, Matthias Feurer, André Biedenkapp, Difan Deng, Carolin Benjamins, Tim Ruhkopf, René Sass, and Frank

Hutter. "SMAC3: A versatile Bayesian optimization package for hyperparameter optimization." Journal of Machine Learning Research 23 (2022): 1-9.

[41] Balcan, Maria-Florina, Anh Nguyen, and Dravyansh Sharma. "New bounds for hyperparameter tuning of regression problems across instances."

Advances in Neural Information Processing Systems 36 (2023): 80066-80078.

[42] Sharma, Dravyansh, and Maxwell Jones. "Efficiently learning the graph for semi-supervised learning." In Uncertainty in Artificial Intelligence, 2023.

[43] Silwal, Sandeep, Sara Ahmadian, Andrew Nystrom, Andrew McCallum, Deepak Ramachandran, and Seyed Mehran Kazemi. "KwikBucks: Correlation

Clustering with Cheap-Weak and Expensive-Strong Signals." In The Eleventh International Conference on Learning Representations, ICLR (2023).

[44] Balcan, Maria-Florina, Avrim Blum, Dravyansh Sharma, and Hongyang Zhang. "An analysis of robustness of non-Lipschitz networks." Journal of

Machine Learning Research 24, no. 98 (2023): 1-43.

[45] Koch, Caleb, Carmen Strassle, and Li-Yang Tan. "Properly learning decision trees with queries is NP-hard." In 2023 IEEE 64th Annual Symposium on

Foundations of Computer Science (FOCS), pp. 2383-2407. IEEE, 2023.

[46] Mathioudaki, Angeliki, Georgios Tsaousoglou, Emmanouel Varvarigos, and Dimitris Fotakis. "Data-Driven Optimization of Electric Vehicle Charging

Stations." In 2023 International Conference on Smart Energy Systems and Technologies (SEST), pp. 1-6. IEEE, 2023.

References

65

[47] Sharma, Dravyansh. "Data-driven algorithm design and principled hyperparameter tuning in machine learning." PhD dissertation, CMU (2024).

[48] Balcan, Maria-Florina, and Dravyansh Sharma. "Learning Accurate and Interpretable Decision Trees." In Uncertainty in Artificial Intelligence, pp. 288-307.

PMLR (2024). Extended version “Learning Accurate and Interpretable Tree-based Models” arXiv preprint arXiv:2405.15911 (2025).

[49] Franceschi, Luca, Michele Donini, Valerio Perrone, Aaron Klein, Cédric Archambeau, Matthias Seeger, Massimiliano Pontil,and Paolo Frasconi.

"Hyperparameter Optimization in Machine Learning." arXiv preprint arXiv:2410.22854 (2024).

[50] Sharma, Dravyansh. "No internal regret with non-convex loss functions." In Proceedings of the AAAI Conference on Artificial Intelligence, vol. 38, no. 13,

pp. 14919-14927. 2024.

[51] Cheng, Hongyu, and Amitabh Basu. "Learning cut generating functions for integer programming." Advances in Neural Information Processing Systems 37

(2024): 61455-61480.

[52] Balcan, Maria-Florina, Christopher Seiler, and Dravyansh Sharma. "Accelerating ERM for data-driven algorithm design using output-sensitive techniques."

Advances in Neural Information Processing Systems 37 (2024): 72648-72687.

[53] Sakaue, Shinsaku, and Taihei Oki. "Generalization bound and learning methods for data-driven projections in linear programming." Advances in Neural

Information Processing Systems 37 (2024): 12825-12846.

[54] Elias, Marek, Haim Kaplan, Yishay Mansour, and Shay Moran. "Learning-augmented algorithms with explicit predictors." Advances in Neural Information

Processing Systems 37 (2024): 97972-98008.

[55] Sambharya, Rajiv, Georgina Hall, Brandon Amos, and Bartolomeo Stellato. "Learning to warm-start fixed-point optimization algorithms." Journal of

Machine Learning Research 25, no. 166 (2024): 1-46.

References

66

[56] Dumouchelle, Justin, Esther Julien, Jannis Kurtz, and Elias B. Khalil. "Neur2bilo: Neural bilevel optimization." Advances in Neural Information Processing

Systems 37 (2024): 86688-86719.

[57] Xie, Yaqi, Will Ma, and Linwei Xin. "VC theory for inventory policies." arXiv preprint arXiv:2404.11509 (2024).

[58] Bostandoost, Roozbeh, Walid A. Hanafy, Adam Lechowicz, Noman Bashir, Prashant Shenoy, and Mohammad Hajiesmaili. "Data-driven Algorithm

Selection for Carbon-Aware Scheduling." ACM SIGENERGY Energy Informatics Review 4, no. 5 (2024): 148-153.

[59] Sharma, Dravyansh, and Arun Suggala. "Offline-to-online hyperparameter transfer for stochastic bandits." In Proceedings of the AAAI Conference on

Artificial Intelligence, vol. 39, no. 19, pp. 20362-20370. 2025.

[60] Balcan, Maria-Florina, Anh Tuan Nguyen, and Dravyansh Sharma. "Sample complexity of data-driven tuning of model hyperparameters in neural

networks with structured parameter-dependent dual function." Advances in Neural Information Processing Systems 38 (2025).

[61] Schneider L, Bischl B, Feurer M. "Overtuning in Hyperparameter Optimization." 4th International Conference on Automated Machine Learning AutoML

(2025).

[62] Balcan, Maria-Florina, Anh Tuan Nguyen, and Dravyansh Sharma. "Algorithm Configuration for Structured Pfaffian Settings." TMLR (2025).

[63] Jiao, Xianqi, Jia Liu, and Zhiping Chen. "Learning complexity of gradient descent and conjugate gradient algorithms." In Proceedings of the AAAI

Conference on Artificial Intelligence, vol. 39, no. 17, pp. 17671-17679. 2025.

[64] Dütting, Paul, Michal Feldman, Tomasz Ponitka, and Ermis Soumalias. "The pseudo-dimension of contracts." In Proceedings of the 26th ACM

Conference on Economics and Computation, pp. 514-539. 2025.

67

[65] Blum, Avrim, and Vaidehi Srinivas. "Competitive strategies to use “warm start” algorithms with predictions." In Proceedings of the 2025 Annual

ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 3775-3801. Society for Industrial and Applied Mathematics, 2025.

[66] Iwata, Tomoharu, and Shinsaku Sakaue. "Learning to Generate Projections for Reducing Dimensionality of Heterogeneous Linear

Programming Problems." In Forty-second International Conference on Machine Learning (2025).

[67] Balcan, Maria-Florina, Saumya Goyal, and Dravyansh Sharma. "Distribution-dependent Generalization Bounds for Tuning Linear Regression

Across Tasks." arXiv preprint arXiv:2507.05084 (2025).

[68] Du, Ally Yalei, Eric Huang, and Dravyansh Sharma. "Tuning Algorithmic and Architectural Hyperparameters in Graph -Based Semi-Supervised

Learning with Provable Guarantees." In The 41st Conference on Uncertainty in Artificial Intelligence (2025).

[69] Sharma, Dravyansh. “Gradient Descent with Provably Tuned Learning-rate Schedules.” arXiv preprint arXiv:2512.05084 (2025).

References

	Slide 1: New Frontiers of Hyperparameter Optimization: Recent advances and open challenges in theory and practice
	Slide 2: What is a hyperparameter?
	Slide 3: Hyperparameter tuning and transfer
	Slide 4: Algorithm design for machine learning
	Slide 5: Roadmap
	Slide 6: Roadmap
	Slide 7: Hyperparameter tuning setup
	Slide 8: Bayesian Optimization
	Slide 9: Bayesian Optimization
	Slide 10: BO has its own hyperparameters!
	Slide 11: Bandit-based approaches
	Slide 12: Other approaches and speedups
	Slide 13: Case study: Neural Architecture Search
	Slide 14: Case study: Neural Architecture Search (NAS)
	Slide 15: Large Language Models: Scaling Laws
	Slide 16: Large Language Models: selecting learning rate using muP
	Slide 17: Limitations of popular HPO approaches in practice
	Slide 18: Roadmap
	Slide 19: Roadmap
	Slide 20: Regularized linear regression
	Slide 21: Regularized linear regression
	Slide 22: Multiple instances
	Slide 23: Multiple instances
	Slide 24: Multiple instances
	Slide 25: Elastic Net [Balcan, Khodak, Sharma and Talwalkar, NeurIPS’22, Balcan, Nguyen, Sharma, NeurIPS’23]
	Slide 26: Elastic Net [Balcan, Khodak, Sharma and Talwalkar, NeurIPS’22, Balcan, Nguyen, Sharma, NeurIPS’23]
	Slide 27: Decision Trees
	Slide 28: Learning optimal decision trees is hard!
	Slide 29: Splitting criterion
	Slide 30: Splitting criterion
	Slide 31: Splitting criterion
	Slide 32: Splitting criterion
	Slide 33: Splitting criterion (a greedy approach)
	Slide 34: Splitting criterion
	Slide 35: Splitting criterion
	Slide 36: Splitting criterion
	Slide 37: Splitting criterion
	Slide 38: Gradient-boosted decision trees
	Slide 39: Gradient-boosted decision trees
	Slide 40: Roadmap
	Slide 41: Example: Semi-Supervised Learning
	Slide 42: Example: Semi-Supervised Learning
	Slide 43: Example: Semi-Supervised Learning
	Slide 44: Refined GJ Framework [Bartlett, Indyk, Wagner, COLT’22]
	Slide 45: Applications [ML, stats, optimization]
	Slide 46: More applications [CS theory, Comp bio, Mech design, Energy …]
	Slide 47: Tuning deep networks: parameters and hyperparameters
	Slide 48: Model vs optimization hyperparameters
	Slide 49: Tuning deep network hyperparameters
	Slide 50: Learning the interpolated activation function
	Slide 51: Learning the interpolated activation function
	Slide 52: Tuning learning rate in gradient descent
	Slide 53: Learning from small-samples
	Slide 54: Algorithms with Predictions
	Slide 55: Roadmap
	Slide 56: Conclusion
	Slide 57: Next five years and beyond …
	Slide 58: Next five years and beyond …
	Slide 59: Questions and transition to panel…
	Slide 60: References
	Slide 61: References
	Slide 62: References
	Slide 63: References
	Slide 64: References
	Slide 65: References
	Slide 66: References
	Slide 67: References

