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What is a hyperparameter?

HP tuning is a special case of algorithm selection in Machine Learning

L2 Linear Ridge/Lasso penalties
4 regression HPs define a collection of
t Logistic L1, L2 regularization algorlthms for leammg a
regression penalties predictor
Decision splitting criterion, Why so common in ML?
Tree pruning cost, max depth Hard problems + role of data
R <><> k-Nearest Kk, weights, metric,
AA A° ° neighbors abstention threshold
° e o Support Vector C, kernel, gamma
° 0% o Machines
Neural activation function,
Networks learning schedule, ...




Hyperparameter tuning and transfer

HP tuning is important across ML

e Data prep + HP tuning take up most of the applied ML researcher hours
e Takes up to 90% of the compute
e Critical in high-stakes and large-scale applications

HP transfer is crucial today!

e Unavoidable in LLMs where each of the above is magnified multifold!



Algorithm design for machine learning

e Hyperparameter tuning is poorly understood and yet of critical importance

o why? ML works on data
MACHINE
@(HRN S
Data E— - ‘ ﬁ > Predictions

o There is NO single best algorithm+hyperparameter!
o Must tune/configure for the best performance on domain-specific data

e Current practices require incredible amounts of compute and engineering efforts, and
yet with no guarantees!

e Understanding how the performance actually varies with the hyperparameter is crucial for
principled tuning



Roadmap

Introduction

Major techniques used in practice
> Bayesian Optimization
> Bandit-based methods
> Case studies: NAS and LLMs
% Data-driven algorithm design
> Learning-theoretic guarantees
> Distributional learning
> Online learning

% Tuning core ML algorithms
> Linear regression, decision trees
> Semi-supervised learning, neural networks

» Conclusion
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Hyperparameter tuning setup

Tune hyperparameters such as learning rate, batch size, weight decay
f(a) = val_loss
Baselines: grid search, random search
Black box optimization (zeroth order optimization)
o no gradient info; treat function as a “black box”

% Grid search i Random search
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Bayesian Optimization

e Gaussian Process:
O

a collection of (infinitely many) random variables that are jointly Gaussian
. o

a distribution over functions — models noisy evaluation of some f(«).

o given by a mean function m(a) and covariance k(a, a’).

E[f(a) = m(a).
E[(fla) — m(a))(f(@') — m(a’))] = k(a, &’).

Igz(a*) |
e Since all finite collections of function values are assumed /\

jointly Gaussian, the conditional distribution of any new H(Of*) |
point given the observed points is also Gaussian,

I.e. posterior predictive mean and variance at a*, given
observed points A is

u(a®) =K(a*, A)K(4, AYIf(A).
o2(a*) = K(a*, a*) — K(a*, A)K(A, AYK(4, a*).

as
1
*
a

A=lay, ay, as, ay, as]



Bayesian Optimization

Acquisition function
e Trade off exploration
vs. exploitation

El(a)=E[max (0, fpes— f(a))]

Bayesian optimization:

for i in {©, ..., n}:
// use GP to compute EI
select a* =max, El(a)
compute val_loss of a”

Accuracy
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0.4 1

0.2 1
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-0.2

——- True objective (hidden)
—— GP mean
95% Cl
»  Observed points

Hyperparameter value (x)




BO has its own hyperparameters!

0 50 100 0 50 100 0 50 100

[Frazier, 2022]

Assumption on the smoothness of the function f(a) = val_loss

(without this assumption, convergence is slow)
[Berkenkamp, Schoellig, Krause JMLR 2019]

BO libraries: [Dragonfly: Kandasamy et al., JMLR 2020],
[SMACS: Lindauer et al. JMLR 2022]
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Bandit-based approaches

Random search with adaptive early stopping

Each arm has a noisy non-stationary reward
that eventually converges to a limiting value

1. Successive halving

Given sets of hyperparameters A
for i in {0, ..., 3}:

run(a, 10 * 2%), aeA

A := top_k(4, 16 * 2°1)

2. Hyperband: multiple runs of successive
halving, across different hyper-
hyperparameters

Loss
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0.00
o

10 2;11 30 40 50
Resources

[Jamieson, Talwalkar (AISTATS 2016))

[Li, Jamieson, DeSalvo, Rostamizadeh,

Talwalkar (JMLR 2018)]
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Other approaches and speedups

BOHB (BO + Hyperband):

Run Hyperband, but replace the
random selection of configurations at
the beginning of each iteration by a
model-based search

[Falkner, Klein, Hutter, ICML 2018]

Learning curve extrapolation:
Speed up HPO algorithms by
extrapolating partial learning curves

[Domhan, Springenberg, Hutter, IJCAI 2015]

regret

107 g
== Random Search
-e- Bayesian Optimization
-4~ Hyperband
-o- BOHB
1072
107°

10} 10% 10° 10* 10° 10°
wall clock time [s]

- pow, &y = 0.07

— log log lincar Ay = 0.05
= — Hill, Ay = 0.02

T~ log power Ay = 0.02
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— pow, Ay =-0.01

= MMF Ay = -0.02

— exP, &y = -0.04

—— Janoschek Ay = .0.04
- Weibyll Ay = -0,04

- ilog, Ay = -0.05

- dota

—  vapor pressure 3y = 0.10 |

0 100 200 300 400
epochs
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Case study: Neural Architecture Search

Define the search space as a DAG with architecture components
(e.g. conv_3x3, conv_5x5, pool, fc)
e The search space is a critical decision [ Talwalkar, UAI 2019]
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[Kandasamy, Neiswanger, Schneider, P6czos, Xing, NeurlPS 2018] 13



Case study: Neural Architecture Search (NAS)

.
Il

WIT-C/14  CoCa (finetuned)

TS

Abuchiat Frve Base + Fryp MiR

0

TOP 1 ACCURALY

013 014 2015 2016 2017 F018 2019 F030 2021 023 I023

Other models - State-of-the-art models

[paperswithcode.com/sota/image-classification-on-imagenet, 2022]

e NAS has been used to achieve SotA on
imagenet seven times since 2017
e NAS has also been used to discover

efficient architectures such as EfficientNet

[Tan, Le, ICML 2019] 14




Large Language Models: Scaling Laws

Training Loss
Pk Pk (Y] (Y] (71 [T
(X kS o w o LY

M
[=]

Scaling Laws for the ratio of tokens per parameter
o Isoflop analysis: given a fixed compute budget, sweep over model sizes
o Fit an empirical trend across small models -> scale up
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[Kaplan et al, 2020], [Hoffmann et al, 2022]
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Large Language Models: selecting learning rate using muP

Maximum Update
Parameterization (muP):

Parameterize the model 7.0
such that the learning rate ¢
IS same across all scales.

Then tune LR once. a
; 5.5
e Width-dependent LR € sy
e Width-dependent "24.5
weight initialization
e Width 40
3.5

Traditional LR scaling law: muP LR scaling law:

optimum stable ==

8192 optimum shifts
20 -18 -16 -14 -12 -10 -20 -18 -16 -14 -12 -10
log,LearningRate logzLearningRate

[Yang, Hu, ICML 2021], [Yang et al., NeurlPS 2021]
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Limitations of popular HPO approaches in practice

e Theoretical guarantees typically need strong assumptions
e Need to tune hyper-hyper-parameters
e Overtuning (val loss is a proxy for generalization) [schneider, Bischl, Feurer, AutoML 2025]

Practitioners rely heavily on empirical findings!

All approaches are black-box!! (agnostic to the structure of the function)

17



Roadmap

% Introduction

% Major techniques used in practice
> Bayesian Optimization
> Bandit-based methods
> (Case studies: NAS and LLMs
s Data-driven algorithm design
> Learning-theoretic guarantees
> Distributional learning
> Online learning

% Tuning core ML algorithms

> Linear regression, decision trees
> Semi-supervised learning, neural networks

» Conclusion
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Machine Learning for Algorithm Design



Design and Analysis of Algorithms

Algorithm: (finite) sequence of precise step-by-step instructions to
solve a well specified class of problems.

Algorithms for solving combinatorial problems. E.g.,

« Clustering: organize an input set of items into natural groups.

« Pricing: price a set of items to maximize revenue.

* Subset selection: output most valuable subset of items
subject to capacity constraint.



Design and Analysis of Algorithms

Algorithms for solving combinatorial problems. E.g.,

clustering, partitioning

pricing, auction design
subset selection

—

Classic 1. Algorithm hand-designed, stroke of genius.

Approach
2. Worst-case analysis, one-problem instance.

———

Many problems typically hard in classic frameworks.



Machine Learning for Algorithm Design

Data-driven algo design: use learning & data for algo design.

« often repeatedly solve instances of the same algo problem.

Classic Work: largely empirical

Al, Computational Biology, Game Theory

2000 2025

[Horvitz-Ruan-Gomes-Kautz-Selman-Chickering, 2001] [DeBlasio-Kececioglu, 2018]
[Xu-Hutter-Hoos-LeytonBrown, 2008] [Likhodedov and Sandholm, 2004]

Recent Work: Data driven algos with provable guarantees.

“Data-driven algorithm design”, M.F. Balcan, chapter in “Beyond the Worst-Case Analysis of Algorithms book, 2020.

Interesting tools, with implications to Hyperparameter Tuning.



Algorithm Design as Distributional Learning

Data-driven algo design: directly learn an algorithm (from a parametric family of
algos) that does well on instances from a given domain.

Large family F of algorithms

MST | +|Dynamic Programming

Greedy |+ | Farthest Location

Sample of typical inputs

Input 1 Input 2

Input m

Input 1 Input m
L v,(C) v, (C) 1,(C) v, (C)
Pricing: v, (M) | vt v,(M) N ()
v,(C&M) v, (C&M) v,(C&M) v, ([C&M)

Knapsack: | .5, .., (vas.),C (v151), -, (VaSn), C




Algorithm Design as Distributional Learning

Sample Complexity: How large should training set be to guarantee that algos
that do well over training set do well on new instances?

Tools from statistical learning theory

m = O(dim(F) /€?) instances suffice for uniform convergence.

dim(F) (e.g. pseudo-dimension): ability of fns in F to fit complex patterns

Overfitting Y W

X1 X2 X3 X4 X5 X6 X7
L J
| |

Training set




Online Algorithm Selection

Online alg. selection: instances arrive online, one by one

Select Algorithm: Aq A; - Ay
Input 1: Input 2: Input m:
Gucci Tennis Dublin ACL Flute Tennis
Get InpUt- Lacoste Soccer Pittsburgh COLT ... | Guitar Soccer
Dior Baseball Bucharest ICML Piano Football
Run algorithm Input 1: Input 2: Input m:
on input: Gucci ennis Dublin A Flute Tennis
Lacoste Soccer Pittsburgh ... || Guitar Soccer
Dior aseball Bucharest Piano ootball
Get cost: cost, cost, CoSt,,

Guarantee: no regret - our cumulative performance comparable to performance of
best parameter setting (algorithm) in hindsight.



Provable Data-Driven Algo Design, Challenges

Learnability of more complex objects.

Key Challenge: much more volatile losses.

Recent work: case studies and general principles.

Key new techniques: structure of dual function classes.



Data-driven algorithm design: Problem Setup

[Gupta-Roughgarden, ITCS'16 &SICOMP’17] [ Balcan, book chapter, 2020].

* Fix an algorithmic pb (e.g., subset selection or clustering).

« Let II be the set of problem instances for this problem.

Let Alg be a family of algos, parameterized by set P € RY; A, the algo in
Alg parametrized by a € P.

« Fix a utility function u: I1 x P — [0, H] where u(l, o) measures the performance
of algo A, on problem instance 1.

* uy:Il - [0,H] induced by A, where u,(I) = u(l, ).



Data-driven algorithm design: Problem Setup

[Gupta-Roughgarden, ITCS'16 &SICOMP’17] [ Balcan, book chapter, 2020].
Specific domain: unknown input distribution D over II.

Learning algo uses m i.i.d. samples [, 1,, ...1,;, ~D to find an algo A, € Alg for future
inputs from D.

(can measure u,(I) of each algo A, € Alg on each input I;)

Goal: output an algo of Alg that performs almost as well as the optimal algorithm
A+ € Alg for D that maximizes

Ei-pluy (I)] over A, € Alg.

Typical approach: pick A that does well over the sample.

Sample Complexity: How large should training set be to guarantee that algos that do
well over training set do well on new instances?



Data-driven algorithm design. Example: Knapsack Problem
[Gupta-Roughgarden, ITCS'16 &SICOMP’17]

Input: An instance | consists of n items (each item i has a value v; and a
size s;), and knapsack capacity C.

Output: select most valuable subset of items that fits. Find subset V to
maximize ).y v; subject to Y.;cy si < C.

Alg : greedy algos parametrized by P = R.
Fora € P, algo A,:

« Set score of item i to be v;/s{".

* In decreasing order of score, we add each item to the knapsack if there is
enough capacity left.

u(l, a) = value of items chosen by the algo param. by o on I.



Data-driven algorithm design. Example: Partitioning Problems
[Balcan-Nagarajan-Vitercik-White, COLT’17] [Balcan-Dick-Lang, ICLR’20]
Input: set of objects S, d.

Output: centers {c,,cy, ..., Cx}
k-means clustering: min ¥, min d*(p, ¢;)
1

k-center (facility location): min max radius.

Alg : greedy algos parametrized by P = R. ‘} :,

1. Greedy linkage-based, get hierarchy. , @
E.g., dist,(A,B) = (1 — a)SL+ a max d(x x") e @ @

x€EAx'eB

2. Fixed algo (e.g., DP or last k-merges) to select a good pruning.

u(l, a) = clustering objective chosen by the algo a on |.



Uniform Convergence

Uniform convergence: for any algo in Alg, average performance over samples
“close” to its expected performance.

* Imply that A that does best over the sample has high expected performance.

Learning theoretic notion of dimension, e.g., pseudo-
dimension

Theorem /
m = O/c—:z) suffices so that for any distribution D over II, with prob.
at least 1 — 6 over the draw {I,, ..., I,}~D, for all algos A, € Alg,

m

1
Er-plug (D] = — ) ug (1)

=1

<E€




Algorithm Design as Distributional Learning

Sample Complexity: How large should training set be to guarantee that algos that
do well over training set do well on new instances?

Tools from statistical learning theory

m = O(dim(F) /€?) instances suffice for uniform convergence.

dim(F) (e.g. pseudo-dimension): ability of fns in F to fit complex patterns

Overfitting Y W

X1 X2 X3 X4 X5 X6 X7
L J
| |

Training set




General Sample Complexity via Dual Classes

Theorem (informa"y) [Balcan-DeBlasio-Kingsford-Dick-Sandholm-Vitercik, STOC 2021&JACM 2024]

Technique for analyzing dim({u,(-) : param a }) that takes advantage of the
structure of dual class {u;(-): instances I}.

Given u:II X P - [0, H] , u(l, ) = performance of A, on 1.

* uy:I1 - [0,H] induced by A, u,(I) = u(, ).
 u;:P - [0,H] induced by I, uj(a) = u(l, a) .

{u;:instances I} dual class for of{u,(:) : param « }



General Sample Complexity via Dual Classes

Theorem (informa"y) [Balcan-DeBlasio-Kingsford-Dick-Sandholm-Vitercik, STOC 2021&JACM 2024]

Technique for analyzing dim({u,(-) : param a }) that takes advantage of the
structure of dual class {u;(:): instances I}.

Key motivation: can often show u; is structured.

Example: knapsack, greedy family Alg, u; piece-wise linear:

[Gupta-Roughgarden, ITCS16 &SICOMP’17]

M

log(d
Critical points of the form o)

<
log(—‘)
S

, 80 O(n?) pieces.



General Sample Complexity via Dual Classes

Theorem (informa"y) [Balcan-DeBlasio-Kingsford-Dick-Sandholm-Vitercik, STOC 2021&JACM 2024]

Technique for analyzing dim({u,(-) : param a }) that takes advantage of the
structure of dual class {u;(-): instances I}.

Example: clustering, parametrized-linkage, u; piece-wise linear
[Balcan-Nagarajan-Vitercik-White, COLT’17] [Balcan-Dick-Lang, ICLR"20] @
1. Greedy linkage-based, get hierarchy.

E.g., disty(AB) = (1 - 0SL+«_max d(xx") (sports ) Clashion)

S— )
2. Fixed algo to select a good pruning. '

Goceep o) \Coud  @eos®

—_———

Roots of linear eqs where we merge one pair vs another pair of clusters.



General Sample Complexity via Dual Classes

Theorem (informa"y) [Balcan-DeBlasio-Kingsford-Dick-Sandholm-Vitercik, STOC 2021&JACM 2024]

Technique for analyzing dim({u,(-) : param a }) that takes advantage of the
structure of dual class {u;(:): instances I}.

Key motivation: can often show u; is structured.

Partitioning Pbs via IQPs Posted Pricing, Two-Part Tariffs,

SDP + s-linear rounding Parametrized VCG auctions, etc.

[Balcan-Sandholm-Vitercik, EC’18]
[Balcan-Nagarajan-Vitercik-White, COLT 2017]

IQP
objective
value
s

a€ER / Price [M\ ]

Decision boundary where the buyer prefers one
bundle over the other, is a hyperplane.

[Balcan-Beyhaghi, TMLR’24]

A

Price (C)
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VVC-dimension (for binary valued classes)

VVC-dimension of a function class H is the cardinality of the largest set S that
can be labeled in all possible ways 23! by H.

[If arbitrarily large finite sets can be shattered by H, then VCdim(H) = o]

E.g., H= linear separators in R%: VCdim(H) = 3

VCdim(H) > 3 VCdim(H) < 4
\ © / O o O
O O
/ @)

E.g., H= linear separators in RY: VCdim(H) = d+1



Pseudo-dimension (for real valued classes)

The pseudo-dimension [Pollard 1984] of a function class F is the cardinality of
the largest set S = {x4, ..., X} and thresholds y4, ...,y s.t. all 2™ above/below
patterns can be achieved by functions f € F.

E.g., m = 2, there should exist f; € Fs.t. f;(x;) <yy,f;(x,) <y, f, EFst f,(x1) > vy,
fo(x2) <yz fz EFst f3(x1) <yy,f3(x3) >y, and fy € Fsit f,(x1) >y, f4(x3) >y,

Equivalently, the pseudo-dimension of F is the VC dim of the class of “below-
the-graph” indicator functions {B¢(x,y) = sgn(f(x) —y) : f € F}



Pseudo-dimension, Uniform Convergence

The pseudo-dimension [Pollard 1984] of a function class F is the cardinality of
the largest set S = {x4, ..., X} and thresholds y4, ...,y s.t. all 2™ above/below
patterns can be achieved by functions f € F.

Uniform convergence guarantees [Pollard'84; Dudley ‘67]
For any 6 € (0,1) and any distribution D over X, with probability 1 — 6 over the draw {x4, ..., X, }~D™, for all

functions f € F,
Pdim(F log(1/6
:O<UJ m) og(/)))
m m

where U is the maximum f(x) for any f € F and x in the support of D.

1 m
Eyplf(O] = — " f(x)
i=1




General Sample Complexity via Dual Classes

Theorem [Balcan-DeBlasio-Kingsford-Dick-Sandholm-Vitercik, STOC 2021&JACM 2024]

Suppose for each u;(a) there are < N boundary fns f;,f,, ... € F s. t within each region
defined by them, 3 g € G s.t. y;(a) = g(a).

Pdim({u,(D)}) = O((dp + dg-) + dg- logN)
dg+ = VCdim of dual of F, dg+ =Pdim of dual of G.




General Sample Complexity via Dual Classes

Theorem [Balcan-DeBlasio-Kingsford-Dick-Sandholm-Vitercik, STOC 2021&JACM 2024]
Suppose for each u;(a) there are < N boundary fns f;,f,, ... € F s. t within each region
defined by them, 3 g € G s.t. y;(a) = g(a).
Pdim({u,()}) = O((dp + dg+) + dg- logN)
dg+ = VCdim of dual of F, dg+ =Pdim of dual of G.

Proof insights:

« Fix D instances I, ..., Ip and D thresholds z,, ..., zp. Bound # sign patterns (u,(I,), ..., u,(Ip)) ranging over
all a. Equivalently, (u;, (), ..., uy, (o).

* Use VCdim of F*, bound # of regions induced by u; (), ..., uy, () : (eND)9F.
* On aregion, exist g, ..., g1, S.t.,(u, (@), ..., ug, (@) = (gy, (@), ..., g1, (@), which equals (a(g,l), ...,a(g,D)).

These are fns in dual class of G. Sauer’s lemma on G*, bounds # of sign patterns in that region by (eD)%*.

« Combining, total of (eND)%(eD)9*. Set to 2P and solve.



Different Algos Work in Different Settings

[Balcan-Dick-Lang, ICLR’20]
« Optimal parameters vary across different distributions.

« Choosing the parameter can give large improvements to loss; improvements over SL
and CL by interpolating between them.

Cifar10 MNIST
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Goldberg-Jderrum (GJ) Framework

Theorem [Bartlett, Indyk, Wagner. COLT'22] Assume o € R", i.e. each A, € Alg has n real param.
For any | and z, there is a GJ procedure [, that determines for all o if u (o) =2z by
evaluating I'l distinct predicates (ratios of polys) with max. degree A. Then:

Pdim(tuy(D}) = O(n log(AM))

GJ (95) Procedure




Goldberg-Jerrum (GJ) Framework

Theorem [Bartlett, Indyk, Wagner. COLT'22] Assume o € R", i.e. each A, € Alg has n real param.
For any | and z, there is a GJ procedure [, that determines for all o if u,(a) 2z by
evaluating 1 distinct predicates (ratios of polys) with max. degree A. Then:

Pdim(tuy(D}) = O(n log(AM))

Theorem [Balcan, Ngyuen, Sharma, TMLR'25 ] Assume o € R", i.e. each A, € Alg has n real param.
For any instance | and threshold z, there is a Pfaffian GJ algorithm I',, that determines
for all o if u(a) =2z by evaluating I1 distinct Pfaffian predicates with Pfaffian chain length
g, degree A, and Pfaffian degree M.

Pdim({u,(D}) = 0(n?qg? + ngln(A + M) + nln1I)



Online Algorithm Selection

|nStanCeS arrive Online one by one. [Balcan-Dick-Vitercik, FOCS’18], [Balcan-Dick-Pedgen, UAI’20]

Guarantee: no regret - cumulative performance of learner comparable to performance of
best algorithm from the family in hindsight.

——————

Challenge: loss functions volatile. _'———-----_' -

Our contribution: identify general properties (piecewise Lipschitz fns with dispersed
discontinuities) sufficient for no regret guarantees.

Not dispersed Dispersed
S /7
\/\ /\/ A N O \/ \ ~ \|/-
—/hl = \|-|-|-|-|-|n|/ — |4§ —m—'—l"—l .
A

Many boundaries within interval Few boundaries within any

interval




Dispersion, Sufficient Condition for No-Regret

[Balcan-Dick-Vitercik, FOCS’18], [Balcan-Dick-Pedgen, UAI’20]
Full info: exponentially weighted forecaster [cesa-sianchi-Lugosi 2006]

Oneachroundt € {1,...,T}:

t—-1
« Sample a; from distr. p;:  p(a) < exp (Az us(a)>

s=1

density of a exponential in its
performance so far

No Regret Guarantees: _
Disperse

/
—#il—\ru—lx\“

Disperse fns, regret O(v/Td fnc of problem)).



Key Questions

« What are interesting tunable families of algos?

 How do we tune algos, to achieve best performance for a given domain,
with provable guarantees?

 Data driven algo design as distributional learning

Suffices to show that dual class {u;(:): instances I} is structured.

 Data driven algo design as online learning

[Balcan-Dick-Vitercik, FOCS'18], [Balcan-Dick-Pegden, UAI'20], [Balcan-Sharma, NeurlPS 2021]

Disperse fns, regret O(v/Td fnc of pb)).



Who designs good machine learning algorithms?

« Often hand-designed, with tunable parameters.

 How do we tune machine learning algorithms with
provable guarantees?

* What are interesting tunable families of algos?



Roadmap

% Introduction

% Major techniques used in practice
> Bayesian Optimization
> Bandit-based methods
> (Case studies: NAS and LLMs
% Data-driven algorithm design
> Learning-theoretic guarantees
> Distributional learning
> Online learning

% Tuning core ML algorithms
> Linear regression, decision trees
> Semi-supervised learning, neural networks

® Future research
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Regularized linear regression

B

2 B2
ly - X513
Given instance (X, y) € R"xP x R™ (3: contours (
m: number of examples g@ /

X;+: regressor, p features
y;- regressand or dependent variable

S
%

B B
L1 )
if
Regularized linear regression vaditm<y notsparse
HHASSOR o ramin e Iy~ XBIL A IR, [Tibshirani 96]
L2 (Ridge): [Hoerl & Kennard 70]

Bz = argmin g ¢ guxp Iy = XBIF +A NG 2




Regularized linear regression

Given dataset (X, y) € Rmxp x R™
m: number of examples

X;*: regressor, p features l
i regressand or dependent variable

Find Ben for
each At A =, | Find X0, AY
Regularized linear regression E;i“;;g‘;i
Elastic net: Ben = argmin g c s 1y — XBIZ+A, 11, + A1 12 [Zou & Hastie 05]
Objective

: Q: How to set hyperparameter a = (A4, Ao) for given dataset?
selection

A: Use a hold out dataset, a grid of parameter values, minimize sqg-error on held-out set



Multiple instances

n instances of the regression problem

L= (X®, y, X 0, 1,0) € Rmxp x Rmi x Rmixp x Rm’

7

m;,m; <m, p;<p.

A O A O A O

0 50 ° prs
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Multiple instances

n instances of the regression problem

L= (X0, y0, X0, 17,0) € Rmxp x R™ x R™xP x R™"

7

m;,m; <m, p;<p.

1 . ae
4 4 4 o loss(P) = _,||ﬂv.1.i — Xwfll*
o ) ® o m z
o ® © P \
@) @)
@ @) (@) (@] _ . X
P/Oz{/o OQ)OO 5O fit on (-\lruiu- Ytrain)
> . R using predicted (A1, A2)




Multiple instances

Instances
(drawn from D) Test instance
A (drawn from D)
o ©
)o/oo/o
Il P % <9 © I=
o)
(Xtrain’ ytrain’ Xval’ yval)
, > _
r 0 A Hyperparameter = A
I R tuning algorithm
Fit B on Xtraim ytrain
00> with reg. coeff. A
13 o ood)
o @ ~
Compute
u validation loss for
= B on Xvals yval



EIaSt|C Net [Balcan, Khodak, Sharma and Talwalkar, NeurlPS’22, Balcan, Nguyen, Sharma, NeurlPS’23]

Example application: Tuning Elastic Net coefficients.

min,, || Xw — y||? + Al|w||>+ A||w]|4

A

Input: Training data X, y and validation data X, y".
Goal: Tune A, A” to minimize dual validation loss + LO terms (AIC/BIC).

Lemma: The dual validation loss is piecewise decomposable in the A, A’ space with
— at most d3“ algebraic boundaries of degree at most d,
— at most 3¢ distinct piece functions, each a rational function with degree at most 2d.

Challenge: sharp transition boundaries, due to LO terms in AIC/BIC validation loss.
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EIaSt|C Net [Balcan, Khodak, Sharma and Talwalkar, NeurlPS’22, Balcan, Nguyen, Sharma, NeurlPS’23]

Lemma: The dual validation loss is piecewise decomposable in the A, A’ space with
— at most d3“ algebraic boundaries of degree at most d,

— at most 3¢ distinct piece functions, each a rational function with degree at most 24.

Proof sketch:
1. Elastic netis equivalent to a lasso for some modified
datasets X’,y’ that depend on the ridge coefficient. i
2. Lasso has a piecewise linear solution in terms of the L1 5
penalty with known conditions for critical points.
3. 1+2 gives polynomial boundary functions and rational
piece functions in terms of both the coefficients.

@A)

Theorem: Sample complexity of tuning A, A" is O(d/&?).
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Decision Trees

Trees for classification:

- Each internal node < Splitting rule
- Each leaf node < Single Class - 50

Interpretable ML models YIE% \O Ylf/ \

- axis-parallel decision boundaries Screen Do Screen
- Neural nets are hard to interpret lungs nothing Mg ”Oth'”g

Hard to learn optimal trees, but several useful heuristics!



Learning optimal decision trees is hard!

Hardness of DT learning
- NP-compIete. [Laurent and Rivest (1976)]
- Superconstant Inapproximability of Decision Tree Learning.

[Koch et al. COLT 2024] [Koch and Strassle FOCS 2023, FOCS 2024]

Faster optimal decision trees (speed up the exp time branch-and-bound algorithm)

[Hu et al. NeurlPS 2019]
[McTavish et al. AAAI 2022]
[Babbar et al. ICML 2025] (combines greedy with branch-and-bound)

Alternative: data-driven formulation,
instances [ : labeled datasets, utility u(I, a) : avg. acc. on instance [



Splitting criterion

O

Top-down decision tree learning
Inputs: Node function class F, tree size t,
splitting criterion G
e Start with leaf node



Splitting criterion

Top-down decision tree learning
Inputs: Node function class F, tree size t,
splitting criterion G
e Start with leaf node
e While at most t leaf nodes
o Split leaf node I using node function f
which maximizes “splitting criterion”



Splitting criterion

Top-down decision tree learning v Q
Inputs: Node function class F, tree size t, /

splitting criterion G Screen
e Start with leaf node lungs nothlng
e While at most t leaf nodes
o Split leaf node I using node function f
which maximizes “splitting criterion”

F = {Smoke, Age >30, Age >50}



Splitting criterion

Top-down decision tree learning v Q
Inputs: Node function class F, tree size t, /

splitting criterion G SaEEr Age
e Start with leaf node lungs > 50
e While at most t leaf nodes Ylfy NO
o Split leaf node | using node function f S e
which maximizes “splitting criterion” IS;ZT nothing
Key decision: Which node to split next F = {Smoke, Age >30, Age >50}

and how? = splitting criterion



Splitting criterion (a greedy approach)

Top-down decision tree learning
Inputs: Node function class F, tree size t,
splitting criterion G

GT)= Y wlgpi(l),---,pc(1)})

[eleaves(T)

w(l): number of datapoints that map to leaf |
pi(l): fraction of them labeled i

F: binary functions for labeling internal nodes: features — {left, right}

G: uses how the current tree partitions the data into different classes to
determine which node to split next and using with function in J

Overall algorithm: Greedy approach to growing a decision tree top-
down (from the root to leaves by repeatedly replacing an existing leaf
with an internal node based on a “splitting criterion”).

Algorithm family: interpolation of popular splitting criteria.




Splitting criterion

@ learn DecisionTreeClassifier

class sklearn.tree.DecisionTreeClassifier(*, criterion="gini',
splitter="best', max_depth=None, min_samples_split=2, min_samples_leaf=1,
min_weight_fraction_leaf=0.0, max_features=None, random_state=None,

max_leaf_nodes=None, min_impurity_decrease=0.8, class_weight=None,
ccp_alpha=0.0, monotonic_cst=None) [source]
A decision tree classifier.

Read more in the User Guide.

Parameters:

criterion : ({“gini”, “entropy”, “log_loss"}, default="gini"




Splitting criterion [Balcan and Sharma (UAI 2024)]

Empirical research suggests different criteria work best on different data [mingers 1989

e Entropy criterion (CART) {p (D), p(D}) = — ;Pi log p;
e Gini impurity (ID3) a{p1(D),...,p(1)}) = Zpi(l — )
e Kearns Mansour 96 !

(a, B)-Tsallis entropy Family of top-down DT learning algorithms

A single criterion which interpolates all three!

c A
TSALLIS . . o
Gorp(P)i=—= (1 (;m )




Splitting criterion [Balcan and Sharma (UAI 2024)]

Ins Banknote Breast cancer Wine
05 \ Z

065
TsSALLIS ( P) 08

92,1 019:

125

14

QE?;LLIS(P) B iiz

i 20

. TSALLIS EY
lima—1 Ja 1 (P) 245
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s 5 s :

Theorem: We can learn to tune («, ) using O (%ﬂf) problem samples.



Splitting criterion [Balcan and Sharma (UAI 2024)]

Theorem: We can learn to tune («, 3) using 0 (ﬂiﬂiﬁ) problem samples.

Proof insights:
e Uses dual function (accuracy as a function of («, 3) on a fixed

instance (X, y)) analysis
o Dual function is piecewise-constant with boundaries given by
exponential equations in («, B):
e Induction over top-down rounds, bounding the number of distinct
behaviors (which node is split and how) in each round
e Over t rounds, O(|F22) distinct behaviors, which implies pseudo-

dimension is O(t log |F]t).



Gradient-boosted decision trees (salcan and Sharma (Arxiv 2025)]

Regularized objective over a collection of K trees (size at most t),
L({T;}, D) =I({T;}, D) + %2 A 3, ||weights of leaves in T,||?

Splitting-criterion in XGBOOST [chen and Guestrin (2016)]:

- Across all nodes of all trees in the ensemble, split the one that maximizes a

. 2 2
score based on first and second order gradients GL , Gr _ G
Hip+A Hrp+A HA+A

State-of-the-art approach for tabular datasets!
[McElfresh et al. (NeurlPS 2023), Jayawardhana et al. (2025)]

Key idea: show piecewise-constant dual with polynomial boundaries



Gradient-boosted decision trees (salcan and Sharma (Arxiv 2025)]

Regularized objective over a collection of K trees (size at most t),
L({T;}, D) =I({T;}, D) + %2 A 3, ||weights of leaves in T,||?

Splitting-criterion in XGBOOST [chen and Guestrin (2016)]:

- Across all nodes of all trees in the ensemble, split the one that maximizes a

. 2 2
score based on first and second order gradients GL , Gr _ G
Hip+A Hrp+A HA+A

There are at most tK|#] different candidate splits, or at most 2K2|#]? pairs

Also over the course of XGBOOST, we have at most {K splits.

= Computable using a GJ algorithm with at most (#2K?|#]%)X predicates (degree 6)
= Pdim(U) = O(tK log(tK|#))



Roadmap

% Introduction

% Major techniques used in practice
> Bayesian Optimization
> Bandit-based methods
> (Case studies: NAS and LLMs
% Data-driven algorithm design
> Learning-theoretic guarantees
> Distributional learning
> Online learning

% Tuning core ML algorithms
> Linear regression, decision trees
> Semi-supervised learning, neural networks

» Conclusion
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Example: Semi-Supervised Learning saican and sharma (NeurlPs 2021)]

* Repeated problems e.g. emails on an email server, spam vs. non-spam

Goal: learn how to connect points using a graph s.t. a (hard or soft) min-cut yields accurate predictions

o A A A AA
A
A A o, A o 4, , 4
° A ™ A A
o * o 4 o AA ¢ o A A
. A A . A A A
o ® o ® A A e % A AAA o ® o ®
° ° A
. :o .AAAA A .o o AMA . :....‘A‘A
. o.o.AA e%000 % A . .
° P )
°
° A .
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Example: Semi-Supervised Learning (saican and sharma (NeurlPs 2021)]

* Graph edges are set using some kernel with hyperparameters
o Polynomial kernel: ( {f(u), f(v)) + a)
o RBF kernel: exp(-d(u, v)*/a?)
* Instances I: partially labeled datasets; Utility: average accuracy of graph SSL

Piecewise-constant dual function with boundaries given by poly/exp equations

o A A A AA
A A
A A o, A ° AAAAA
L A A L A A % A
° A ™ A A
° L o A L A A o o A A
(] A A (] A ° A A
o ® o ® A A o % A AAA . o ®
° ° A
o ‘e QAAAA A .' o M4 . :..QOAAAA
.
. Q.O.AA e%000 0 LA . .
° o o0
A o0
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Example: Semi-Supervised Learning (saican and sharma (NeurlPs 2021)]

Goal: learn how to connect points using a graph s.t. a (hard or soft) min-cut yields accurate predictions

o statistical learning: tight upper+lower bounds on learning-theoretic complexity

o online learning: no regret by showing critical points are dispersed; primal-dual
algorithm for computing pieces exactly;

o faster approx pieces using conjugate gradient method [Sharma and Jones, UAI 2023]

o A A A AA
A A A
A A o, A o A
] A ] A LS A
o 4 A A A A
o * o & ¢ Aa ® o 4 A
o‘..o ‘A A 0%’ . Ll o Lo 4 A
. . A
o :o R AAAA A ..® o A A o oo, ..‘A‘A
o
° * . ouh e®s0 0 % LA ° .
o ® o0
A (X
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Refined GJ Framework [Bartlett, Indyk, Wagner, COLT’22]

Example application: Low-rank approximation.

Inst, I: Given a sparse matrix 4 € R"*" withHAHF — 1, target rank k < n.
Goal: Sparse matrix A4 with rank k that minimizes (approximates A well).

Exact algorithm based on SVD (singular value decomposition) is inefficient!

Faster algorithm IVY [indyk, vakilian, Yuan '19] iS family of parameterized heuristics
uses a m x n auxiliary matrix (runtime nearly linear in #non-zero entries!).

Theorem: Sample complexity of tuning IVY is O(mn/e?).
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Applications [ML, stats, optimization]

Low-rank approximation [Bartlett, Indyk, Wagner, COLT 2022]

Regularizing linear (Elastic Net) and logistic regression [BKST NeurlPS 2022, BNS NeurlPS
2023, BGS 2025]

Simulated Annealing [Blum, Dan, Seddighin, AISTATS 2021]

Learning to branch and cut [Balcan, Dick, Sandholm, Vitercik, ICML 2018, JACM 2024]

Clustering (both k-center and hierarchical) [BNvw cOLT 2017, BDW NeurlPS 2018, BDL ICLR 2020]
Gradient descent [Gupta and Roughgarden, ITCS 2016]

Integer and Linear Programming [Balcan et al., Khodak et al., Cheng and Basu, Sakaue and Oki (2024)]

45



More applications [CS theory, Comp bio, Mech design, Energy ...]

Knapsack, Maximum Weighted Independent Set [Gupta and Roughgarden, ITCS 2016, Balcan et
al., FOCS 2018, Sun et al. 2022]

Max cut, Max 2-SAT [Balcan et al., COLT 2017]
Dynamic Programming, Sequence Alignment [Balcan et al., COLT 2017, STOC 2021, NeurlPS 2024]
Mechanism and game design [Balcan et al., EC18, NeurlPS 24, Jin et al. NeurlPS 24, Diitting et al. EC 2025]

Energy and climate science [Mathioudaki et al., 2023, Bostandoost et al. 2024]
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Tuning deep networks: parameters and hyperparameters

fixed during training

P
e Hyperparameter space A =[a.,;, dmax] € R (hyperparameter o)

e Model parameter space W c R (parameters/weights w) «— |

updated during training

e Example (learning activation functions):
o Consider a DNN 7, ;,, with model weights w = (w;, ..., wp)

font

o Parametric ReLU activation function

- } )
PReLU(z) = { ifz20 T()=ay
axr, otherwise

o More generally, one can interpolate* any activation functions
0(z) = a01(z) + (1 - ) 0x(2)

where o0,, 0, are common activation functions, a is interpolation hyperparameter

*inspired by DARTS approach for Neural Architecture Search [Liu et al. ICLR’19]




Model vs optimization hyperparameters

Impact learned weights w

Are part of:

Examples

“Model” or “architectural”
hyperparameters

YES

learned deep network 7, ,,

activation function
hyperparameters, kernel
parameters

“Optimization”
hyperparameters

YES
optimization algorithm
learning rate,

learning schedule,
momentum
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Tuning deep network hyperparameters saican, Nguyen, sharma, 2025]

Instances I: labeled datasets; utility: avg acc
Sample complexity of data-driven tuning of model hyperparameters (e.g.
activation fns, GNN kernels) with p/w poly parameter-dependent dual fn

w) aod
e -

Lo

Poly surface depicting parameter-dependent U*(@) = Ug(X) = supy, fil @, w)

dual f,(a, w) and piecewise structure of dual new techniques to bound discontinuities and
i oscillations of dual
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Learning the interpolated activation function

e DNN 1, ., with L layers
e Layeri: W, params (total W), k; nodes (total k)

o 0(z)=a0(2)+(1-a)o,(z), where o,, 0, piecewise poly.
with max degree A, p breakpoints

e T samples (not assumed iid) in each problem instance

50



Learning the interpolated activation function isaican, Nguyen, sharma, 2025]

Theorem (informal): Pdim(U) = O(log M + d log(AN)), where

M is the number of connected components
N is the number of boundaries
d is the dimension of w

A is the maximum polynomial degree

Application: For the activation function interpolation:
Pdim(U) = O(L*W log A + LW log(Tpk))

Open Q: Improve?
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Tuning learning rate in gradient descent [shama, 2025]

Gradient descent algorithm: Instance is (x, f), loss = num steps till convergence.

Inputs: initial point x, iterations H, threshold 0. Hyperparameter: learning rate n

1: Initialize 21 < =
2. fori=1,...,Hdo

s oW

Output: x;

if

|V f(z;)|| < 6 then
Return z;

Tiv1 = x; — NV f(x;)

Prior work by Gupta and Roughgarden (2016):
Assumes: f is convex and smooth

Sample complexity of tuning learning rate is OH?3«2)

We get O(H3%/:2) sample complexity even for
non-convex non-smooth functions in deep

networks! Open Q: Improve?
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Learning from small-samples

Can we figure out how to find the good hyperparameters for larger datasets/models based
on learning good hyperparameters for smaller datasets/models?

[Chatziafratis, Karmarkar, Li and Vitercik, 2025] give some initial answers for algorithm selection
in clustering

Open Q:
Neural Networks?
LLMs scaling laws?
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Algorithms with Predictions

A new approach to designing algorithms, with predictions from machine learning
* Clustering [Ergun et al. ICLR 2022, Silwal et al. ICLR 2023, Braverman et al. arXiv 2025]

* Graph algorithms [Dinitz et al. 2021, Chen et al. ICML 2022, Aamand et al. arXiv 2025]

* Many, many more [350+ recent papers https://algorithms-with-predictions.github.io/]

Hot research topic, but how do we actually learn the predictions? [Khodak et al. NeurlPS 2022]
Open Q:

Learning-augmented
hyperparameter tuning?
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Roadmap

% Introduction
* Major techniques used in practice
> Bayesian Optimization
> Bandit-based methods
> (Case studies: NAS and LLMs
s Data-driven algorithm design
> Distributional learning
> Online learning
% Tuning core ML algorithms
> Linear regression, decision trees
> Semi-supervised learning, neural networks

< Conclusion
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Conclusion

e Last~20 years:

o Explosive growth in powerful ML algorithms and their range of applications
o New practically successful approaches to algorithm design

e Last 10 years:

o Machine learning for algorithm design acquired solid foundations in
learning theory

e Last5 years:

o Hyperparameter tuning is rapidly transforming from an art to a principled
science
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Next five years and beyond ...

Other applications to tuning important hyperparameters and algorithms
Focus on statistical complexity ——— computationally efficient methods?
Making currently used approaches in practice more structure-aware

Beyond the worst-case complexity: distribution-dependent bounds

More challenging high-dimensional and distributed settings

o E.qg. extend our model hyperparameter tuning result to multiple
hyperparameters
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Next five years and beyond ...

For essentially all ML algorithms of interest, we will know how to provably
configure hyperparameters

ML can be used to solve its own problems of robustness, interpretability and
trustworthiness

Reliable and safe use of Al is going to be critical
o We require more from generative Al
o Data-driven approaches are promising candidates

ML-designed algorithms for ML can unlock as-yet untapped potential
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Questions and transition to panel...

- Linear Ridge/Lasso penalties
. regression
k Logistic L1, L2 regularization
regression penalties
Decision splitting criterion,
Tree pruning cost, max depth
R 2 k-Nearest k, weights, metric,
AA AO ° neighbors abstention threshold
° @ o Support Vector C, kernel, gamma
° 0% e Machines
Neural activation function,

Networks learning schedule, ...
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