Learning piecewise Lipschitz fns in changing environments

Mar 3, 2020

Joint work with: N Balcan, T Dick

Presented by: Dravy Sharma dravyans@andrew.cmu.edu Grad Student, CSD, CMU

Data-driven algorithm selection:

• Think of **hard** combinatorial problems E.g. clustering, integer programming, subset selection

Data-driven algorithm selection:

• Think of hard combinatorial problems E.g. **clustering**, integer programming, subset selection

Data-driven algorithm selection:

- Think of hard combinatorial problems E.g. clustering, integer programming, subset selection
- Suppose you have to repeatedly solve instances (drawn from unknown distribution)

Data-driven algorithm selection:

Think of hard combinatorial problems
 E.g. clustering, integer programming, subset selection

 Suppose you have to repeatedly solve instances (drawn from unknown distribution)

Interpolate between heuristics with parameter ρ Learn data-specific optimal ρ

$$\rho(1-\rho)(1-\rho)(1-\rho)$$

Data-driven algorithm selection:

- Think of hard combinatorial problems
 E.g. clustering, integer programming, subset selection
- Suppose you have to repeatedly solve instances (drawn from unknown distribution)

Interpolate between heuristics with parameter ρ Learn data-specific optimal ρ

ML algorithms are often algo families (d hyperparameters $\Rightarrow \rho \in R^d$)

How does algorithm payoff change with parameter ρ ?

Can have sharp discontinuities!
 E.g. Choosing different initial centers in clustering can cascade into very different results

How does algorithm payoff change with parameter ρ ?

Can have sharp discontinuities!
 E.g. Choosing different initial centers in clustering can cascade into very different results

Typically piecewise Lipschitz (discontinuous, but each piece has bounded

slope)

Choosing optimal ρ = online learning of piecewise Lipschitz fns

But why online?

- Infeasible to use all data (computationally or otherwise)
- Dynamically adapt to new data patterns (e.g. changing user base)

Motivation (theoretical)

Also generalizes previously known studies in online learning:

- OCO Online convex optimization
- Optimization of nonconvex but Lipschitz functions

• At each time $t = 1 \dots T$

- At each time *t* = 1 ... *T*:
 - We need to pick a point ρ_t in domain

- At each time $t = 1 \dots T$:
 - We need to pick a point ρ_t in domain
 - Payoff function $u_t(.)$ is revealed

- At each time $t = 1 \dots T$:
 - We need to pick a point ρ_t in domain
 - Payoff function $u_t(.)$ is revealed
 - We experience payoff $u_t(\rho_t)$

- At each time $t = 1 \dots T$:
 - We need to pick a point ρ_t in domain
 - Payoff function $u_t(.)$ is revealed
 - We experience payoff $u_t(\rho_t)$

Goal: Maximize $\Sigma_t u_t(\mathbf{\rho}_t)$

• **Regret**: compares performance of an online algorithm with a somewhat more constrained *offline* optimal algorithm.

- **Regret**: compares performance of an online algorithm with a somewhat more constrained *offline* optimal algorithm.
- Standard/static regret: Performance relative to best fixed point *in hindsight*

$$\mathbb{E}\left[\max_{\rho^* \in \mathcal{C}} \sum_{i=1}^{T} (u_t(\rho^*) - u_t(\rho_t))\right]$$

- Regret: compares performance of an online algorithm with a somewhat more constrained offline optimal algorithm.
- Standard/static regret: Performance relative to best fixed point *in hindsight*

$$\mathbb{E}\left[\max_{\rho^* \in \mathcal{C}} \sum_{i=1}^{T} (u_t(\rho^*) - u_t(\rho_t))\right]$$

If regret is sublinear, average regret = $o(T)/T \rightarrow 0$ as T increases

- **Regret**: compares performance of an online algorithm with a somewhat more constrained *offline* optimal algorithm.
- Standard/static regret: Performance relative to best fixed point *in hindsight*

$$\mathbb{E}\left[\max_{\rho^* \in \mathcal{C}} \sum_{i=1}^{T} (u_t(\rho^*) - u_t(\rho_t))\right]$$

Not suitable for changing environments!

• 's-shifted regret' compares performance against offline algorithm which can use up to s experts by switching s-1 times. [Herbster, Warmuth '98]

$$\mathbb{E}\left[\max_{\substack{\rho_i^* \in \mathcal{C}, \\ t_0 = 1 < t_1 \dots < t_s = T+1}} \sum_{i=1}^s \sum_{t=t_{i-1}}^{t_i - 1} (u_t(\rho_i^*) - u_t(\rho_t))\right]$$

• Lower bound for arbitrary piecewise Lipschitz functions: sublinear regret is impossible for any algorithm even for s = 1!

• Lower bound for arbitrary piecewise Lipschitz functions: sublinear regret is impossible for any algorithm even for s = 1!

Halving Adversary

• Lower bound for arbitrary piecewise Lipschitz functions: sublinear regret is impossible for any algorithm even for s = 1!

Halving Adversary

t = 1

• Lower bound for arbitrary piecewise Lipschitz functions: sublinear regret is impossible for any algorithm even for s = 1!

Halving Adversary

• Lower bound for arbitrary piecewise Lipschitz functions: sublinear regret is impossible for any algorithm even for s = 1!

Halving Adversary

• Adding up regret across all rounds, we get linear regret. Offline OPT can get all rounds right, we only get half in expectation.

Halving Adversary

Regret = T/2

Dispersion

• Is it ever possible to learn piecewise Lipschitz functions? Is so, when?

Turns out *dispersion* is necessary and sufficient!

• β -dispersed: if for all T and for all $\epsilon \leq T^{-\beta}$

$$\mathbb{E}\left[\max_{\rho\in\mathcal{C}}\left|\left\{1\leq t\leq T\mid u_{t} \text{ is not L-Lipschitz in } \mathcal{B}(\rho,\epsilon)\right\}\right|\right]\leq \tilde{O}(\epsilon T)$$

Intuitively, concentration of discontinuities in space, when averaged over time is bad for learning!

Dispersion

• β -dispersed: if for all T and for all $\epsilon \leq T^{-\beta}$

$$\mathbb{E}\left[\max_{\rho\in\mathcal{C}}\left|\left\{1\leq t\leq T\mid u_{t} \text{ is not L-Lipschitz in } \mathcal{B}(\rho,\epsilon)\right\}\right|\right]\leq \tilde{O}(\epsilon T)$$

Many boundaries within interval

Few boundaries within interval

Main results

• Upper bound on 's-shifted regret': There exists an efficient algorithm with regret bounded by

$$O(\sqrt{sdT\log T} + sT^{1-\beta})$$

- Lower bound
 - Matching modulo root-log(*T*) factor

For each $\beta > \frac{\log 3s}{\log T}$, there exist utility functions $u_1, \ldots, u_T : [0,1] \to [0,1]$ which are β -dispersed, and regret of any online algorithm is $\Omega(\sqrt{sT} + sT^{1-\beta})$.

Dispersion gives a tight characterization!

Algorithm [Balcan Dick Vitercik, FOCS'18]

Algorithm

Exponential Forecaster

- 1. $w_1(\rho) = 1$ for all $\rho \in \mathcal{C}$
- 2. For each t = 1, 2, ..., T:
 - i. $W_t := \int_{\mathcal{C}} w_t(\rho) d\rho$
 - ii. Sample ρ with probability proportional to $w_t(\rho)$, i.e. with probability $p_t(\rho) = \frac{w_t(\rho)}{W_t}$
 - iii. Update weights

$$w_{t+1}(\rho) = e^{\lambda u_t(\rho)} w_t(\rho)$$

Good regular regret but can have bad *s*-shifted regret!

Idea: Mix p sampling with uniform distribution

Fixed Share Exponential Forecaster Algorithm

- 1. $w_1(\rho) = 1$ for all $\rho \in \mathcal{C}$
- 2. For each t = 1, 2, ..., T:
 - i. $W_t := \int_{\mathcal{C}} w_t(\rho) d\rho$
 - ii. Sample ρ with probability proportional to $w_t(\rho)$, i.e. with probability $p_t(\rho) = \frac{w_t(\rho)}{W}$.
 - iii. Update weights

$$w_{t+1}(\rho) = (1 - \alpha)e^{\lambda u_t(\rho)}w_t(\rho) + \alpha Z_t$$

Good *s*-shifted regret!

$$Z_t = \frac{\int_{\mathcal{C}} e^{\lambda u_t(\rho)} w_t(\rho) d\rho}{\text{VoL}(\mathcal{C})}$$

$$\alpha = \frac{s-1}{T-1}$$

$$\alpha = \frac{s-1}{T-1}$$
 $\lambda = \sqrt{s(d\log(RT^{\beta}) + \log(T/s))/T}/H$

 Mixing with uniform allows faster adaptation to changing `best expert' (explore vs exploit!)

$$t = T/2 ... T$$

 Mixing with uniform allows faster adaptation to changing `best expert' (explore vs exploit!)

$$t = 1 ... T/2$$

$$t = T/2 ... T$$

Exponential Forecaster, Fixed Share EF

Algorithm : Why it works?

- Ensures that the optimal solution, and its neighborhood, in hindsight have a large total density
- Achieve this by carefully setting the parameters, in particular the *exploration* parameter α which controls the rate at which we allow our confidence on 'good' experts to change
- Lipschitzness and dispersion are then used to ensure that solutions sufficiently close to the optimum are also good on average

Gets us the upper bound on regret: $O(\sqrt{sdT \log T} + sT^{1-\beta})$

- Implementation is tricky!
 - How to maintain weights for uncountably infinite points?
- Efficient implementation in continuous setting (infinite experts) with same asymptotic regret
 - o Tricks:
 - Use approximate weights
 - Sample approximately without computing p_t explicitly
 - Use logconcave sampling and integration algorithms
 - Approximate weights and sampling in multi-dimensional case for piecewise concave utility functions - O(poly(d,T))
 - 1-D piecewise constant functions O(log T) updates
- Polynomial time algorithm with same asymptotic expected regret!

Recurring environments

- s environment shifts may rotate among m < s environments
- 'm-sparse, s-shifted' regret to capture this, can we do better when $m \ll s$

$$\mathbb{E}\left[\max_{\substack{\rho_i^* \in \mathcal{C}, \\ t_0 = 1 < t_1 \dots < t_s = T+1, \\ \left|\{\rho_i^* | 1 \le i \le s\}\right| \le m}} \sum_{i=1}^s \sum_{t=t_{i-1}}^{t_i-1} (u_t(\rho_i^*) - u_t(\rho_t))\right]$$

Mix with the past distributions!

Algorithm

'*m*-sparse, *s*-shifted' regret

Generalized Share Exponential Forecaster $[\alpha, \gamma]$ Algorithm

- 1. $w_1(\rho) = 1$ for all $\rho \in \mathcal{C}$
- 2. For each t = 1, 2, ..., T:

i.
$$W_t := \int_{\mathcal{C}} w_t(\rho) d\rho$$

- ii. Sample ρ with probability proportional to $w_t(\rho)$, i.e. with probability $p_t(\rho) = \frac{w_t(\rho)}{W_*}$
- iii. Update weights

$$w_{t+1}(\rho) = (1 - \alpha)e^{\lambda u_t(\rho)}w_t(\rho) + \alpha \left(\int_{\mathcal{C}} e^{\lambda u_t(\rho)}w_t(\rho)d\rho\right) \sum_{i=1}^t \beta_{i,t}p_i(\rho)$$

where
$$\beta_{i,t} = \frac{e^{-\gamma(t-i)}}{\sum_{t=0}^{t} e^{-\gamma(t-j)}}$$

where
$$\beta_{i,t} = \frac{e^{-\gamma(t-i)}}{\sum_{j=1}^{t} e^{-\gamma(t-j)}}$$
 $\lambda = \sqrt{(md \log(RT^{\beta}) + s \log(T/s))/T}/H$, $\alpha = s/T$ and $\gamma = s/mT$

Idea: Mix p

with all

previous

distributions

$$R_T \le O(H\sqrt{T(md\log(RT^{\beta}) + s\log(mT/s))} + (mH + L)T^{1-\beta})$$

Algorithm

- Generalized Share helps in recurring environments
 - As long as the optimal region recurs, it can give better performance

Algorithm

- Generalized Share helps in recurring environments
 - As long as the optimal region recurs, it can give better performance

Regret bound:

$$O(\sqrt{\underline{sd}T\log T} + \underline{s}T^{1-\beta}) \implies O(\sqrt{(\underline{md} + \underline{s})T\log T} + \underline{m}T^{1-\beta})$$

• Our 'mean adversary' doesn't work as it is not dispersed

Too concentrated!

• Need a new, smarter way which ensures dispersion

- Need a new, smarter way which ensures dispersion
 - \circ Ingredient #1 $A(\mathbf{\varrho})$

with probability ½ each

$$t = 1 ... T$$

- Need a new, smarter way which ensures dispersion
 - \circ Ingredient #1 $A(\mathbf{Q})$

with probability ½ each

$$t = 1 ... T$$

Regret =
$$E[OPT - Any]$$

= $\Omega(\sqrt{T})$

- Need a new, smarter way which ensures dispersion
 - \circ Ingredient #1 $A(\mathbf{Q})$

with probability ½ each

$$t = 1 ... T$$

s-shifting Regret =
$$E[OPT - Any] = \Omega(\sqrt{sT})$$

- Need a new, smarter way which ensures dispersion
 - \circ Ingredient #1 $A(\mathbf{\varrho})$

with probability ½ each But still NOT dispersed!

$$t = 1 ... T$$

s-shifting Regret =
$$E[OPT - Any] = \Omega(\sqrt{sT})$$

- Need a new, smarter way which ensures dispersion
 - Ingredient #2: *s phases with T/s fns each*

Each phase has two parts:

First: Dispersed $A(\mathbf{Q})$'s in the center

$$t = 1 \dots T/s - T^{1-\beta}$$

Regret = $\Omega(\sqrt{T/s})$

000

- Need a new, smarter way which ensures dispersion
 - Ingredient #2: *s phases with T/s fns each*

Each phase has two parts:

$$t = 1 \dots T/s - T^{1-\beta}$$

Regret = $\Omega(\sqrt{T/s})$

$$t = T/s - T^{1-\beta} \dots T/s$$

Regret = $\Omega(T^{1-\beta})$

- Need a new, smarter way which ensures dispersion
 - Ingredient #2: *s phases with T/s fns each*

Each phase has two parts:

$$t = 1 \dots T/s - T^{1-\beta}$$

Regret = $\Omega(\sqrt{T/s})$

$$t = T/s - T^{1-\beta} \dots T/s$$

Regret = $\Omega(T^{1-\beta})$

Successive phases in largest 'unused' interval

Total Regret
=
$$\Omega(\sqrt{sT} + sT^{1-\beta})$$

- α -Lloyd clustering [Balcan Dick White, NeurIPS'18]:
 - Way to initialize k-means centers
 - \circ Pick successive centers randomly with probability proportional to d^{α}
 - Interpolates between random sampling (α = 0), k-means++ (α = 2) and farthest first traversal (α = ∞)

- α -Lloyd clustering [Balcan Dick White, NeurIPS'18]:
 - Way to initialize k-means centers
 - \circ Pick successive centers randomly with probability proportional to d^{α}
 - Interpolates between random sampling (α = 0), k-means++ (α = 2) and farthest first traversal (α = ∞)
- Quality of clusters is a piecewise constant function of α with potentially sharp changes cascading from initial choice of centers
 - \circ Can we learn data-specific good α ?

- For example, considering clustering the images of digits in MNIST.
 - \circ **p** = $\alpha \in [0, 10]$
 - $u_t(\mathbf{p})$ = Hamming cost of clustering produced by α -Llyod clustering
- How to simulate changing distributions?
 - We sample from different subsets of digits at different times
 - \circ E.g. even digits for $t = 1 \dots T/2$ and odd digits for $t = T/2+1 \dots T$

- Average 2-shifted regret for α -Lloyd clustering ($\mathbf{k} = \mathbf{2}$):
 - Half the classes till T/2 and other half for other half.

Figure 1: Average 2-shifted regret vs game duration T for online clustering against 2-shifted distributions. Color scheme: **Exponential Forecaster**, **Fixed Share EF**, **Generalized Share EF**

- Average 2-shifted regret for α -Lloyd clustering (**k** = #**classes**):
 - All but one class presented in each phase.

Figure 3: Average k-shifted regret vs game duration T for online clustering against k-shifted distributions. Color scheme: Exponential Forecaster, Fixed Share EF, Generalized Share EF

• Fixed Share vs Generalized Share: How to decide?

Figure 4: Number of recurrences of various values of α in the top decile across all rounds

• Same dataset (MNIST), different clustering classes

Takeaways

- Hard problems have heuristics, no one heuristic may dominate all others.
- If you have to solve a problem several times, it pays to interpolate heuristics and learn data-specific algorithm/parameters.
- It's possible to adapt to sudden, sharp changes -- provided the data/distribution is 'nice' enough.
- Careful balance of exploring/revising and exploiting/reusing is key.
- It may be impossible to learn if data is not 'nice', so probably worth knowing if there is no hope.

Thank you!

QUESTIONS?