Learning piecewise Lipschitz fns

in changing environments
Mar 3, 2020

Joint work with: N Balcan, T Dick

Presented by: Dravy Sharma
dravyans@andrew.cmu.edu
Grad Student, CSD, CMU

Motivation

Data-driven algorithm selection:
e Think of hard combinatorial problems
E.g. clustering, integer programming, subset selection

Motivation
Data-driven algorithm selection:
e Think of hard combinatorial problems “:> Heuristic
E.g. clustering, integer programming, subset selection gl

Single linkage

A

../:. .B..

Complete linkage

Motivation

Data-driven algorithm selection:
e Think of hard combinatorial problems
E.g. clustering, integer programming, subset selection
e Suppose you have to repeatedly solve instances
(drawn from unknown distribution)

Motivation

Data-driven algorithm selection:

e Think of hard combinatorial problems “:> Heuristic

E 1 : . . b lecti algorithms!
.g. clustering, integer programming, subset selection

e Suppose you have to repeatedly solve instances
(drawn from unknown distribution)

6 Interpolate between heuristics with parameter p
Learn data-specific optimal p

p()H(1-p)(

Motivation

Data-driven algorithm selection:

e Think of hard combinatorial problems “:> Heuristic

E 1 : . . b lecti algorithms!
.g. clustering, integer programming, subset selection

e Suppose you have to repeatedly solve instances
(drawn from unknown distribution)

6 Interpolate between heuristics with parameter p

Learn data-specific optimal p

6 ML algorithms are often algo families
(d hyperparameters = p € RY)

Motivation

How does algorithm payoff change with parameter p?

e Can have sharp discontinuities!
E.g. Choosing different initial centers in clustering can cascade into very
different results

One center

change >

Motivation

How does algorithm payoff change with parameter p?

e Can have sharp discontinuities!
E.g. Choosing different initial centers in clustering can cascade into very
different results

e Typically piecewise Lipschitz (discontinuous, but each piece has bounded
slope)

value

Motivation

Choosing optimal p = online learning of piecewise Lipschitz fns

Motivation

But why online?
e Infeasible to use all data (computationally or otherwise)
e Dynamically adapt to new data patterns (e.g. changing user base)

Dow

Motivation (theoretical)

Also generalizes previously known studies in online learning:
e OCO - Online convex optimization
e Optimization of nonconvex but Lipschitz functions

value

value
value

Online learning

e Ateachtimet=1...T

Online learning

e Ateachtimet=1...T:
o We need to pick a point p, in domain

v

Online learning

e Ateachtimet=1...T:
o We need to pick a point p, in domain
o Payoff function u (.) is revealed

v

Online learning

e Ateachtimet=1...T:
o We need to pick a point p, in domain
o Payoff function u (.) is revealed
o We experience payoff u (p,)

v

Online learning

e Ateachtimet=1...T:
o We need to pick a point p, in domain Goal:
o Payoff function u (.) is revealed
o We experience payoff u (p,)

Maximize 2 u (p,)

H
|

Online learning

e Regret: compares performance of an online
algorithm with a somewhat more constrained
offline optimal algorithm.

Online learning

Regret: compares performance of an online

algorithm with a somewhat more constrained g

offline optimal algorithm.
Standard/static regret: Performance relative to
best fixed point in hindsight

T

E max ('U:t([)*) — Ut (Pt))
et in

Online learning

e Regret: compares performance of an online
algorithm with a somewhat more constrained
offline optimal algorithm.

e Standard/static regret: Performance relative to
best fixed point in hindsight

T
E max (ue(p™) — ue(pe))

If regret is sublinear, average regret = o(T)/T — 0 as T increases

Online learning

Regret: compares performance of an online
algorithm with a somewhat more constrained g
offline optimal algorithm.

Standard/static regret: Performance relative to
best fixed point in hindsight

T

E max ('U:t([)*) — Ut (Pt))
et in

Not suitable for changing environments!

Online learning

e ’‘s-shifted regret’ compares performance against offline algorithm which
can use up to s experts by switching s — 1 times. [Herbster, Warmuth "98]

S [‘—1

E max s G
p; €C, Z Z (lf-(pa,) “t(/)(,))

to=1<ty - <t,=T+1 =1 t=ti—1

F_pl*_»! Ep2+wp3_7. o0 o0 P
t

A mean adversary

e Lower bound for arbitrary piecewise Lipschitz functions: sublinear regret is
impossible for any algorithm even for s = 1!

A mean adversary

Lower bound for arbitrary piecewise Lipschitz functions: sublinear regret is

impossible for any algorithm even for s = 1!

value

Halving Adversary

OR

value

with
probability
Y2 each

)
Regret

%!

A mean adversary

Lower bound for arbitrary piecewise Lipschitz functions: sublinear regret is

impossible for any algorithm even for s = 1!

Halving Adversary

value

)
Regret

%!

A mean adversary

Lower bound for arbitrary piecewise Lipschitz functions: sublinear regret is

impossible for any algorithm even for s = 1!

value

Halving Adversary

OR

value

with
probability
Y2 each

)
Regret

%!

A mean adversary

Lower bound for arbitrary piecewise Lipschitz functions: sublinear regret is

impossible for any algorithm even for s = 1!

Halving Adversary

OR

and soon ...

value

\.

with
probability
Y2 each

)
Regret

%!

A mean adversary

e Adding up regret across all rounds, we get linear regret. Offline OPT can get
all rounds right, we only get half in expectation.

Halving Adversary

)
Regret

T/2

Dispersion
e [sit ever possible to learn piecewise Lipschitz functions? Is so, when?

Turns out dispersion is necessary and sufficient!

e -dispersed: if for all T and for all e<T¥

E lmagc {1 <t <T|wy is not L-Lipschitz in B(p,€)}|| < O(eT)
pEeE

a Intuitively, concentration of discontinuities in space, when averaged over
.. time is bad for learning!

Dispersion

e B-dispersed: if for all T and for all e< T

E max {1 <t < T | uyisnot L-Lipschitz in B(p,€)}|| < O(eT)
peC
S u, Not disperse Y. u, Disperse
P /\/\/\/\\’\ /\/\ //
N A S N

Many boundaries within interval Few boundaries within interval

Main results

e Upper bound on ‘s-shifted regret’: There exists an efficient algorithm with
regret bounded by

O(v/sdT log T 4 sT'~7)

e Lower bound
o Matching modulo root-log(T) factor

1 3
For each 3 > Og’ =

regret of any onlme algonthm is Q(v/sT + sT'—P).
—

Dispersion gives a tight characterization!

\

, there exist utility functions uy, . .. ,ur : [0,1] — [0, 1] which are 3-dispersed, and

Algorithm [Balcan Dick Vitercik, FOCS18]

Algorithm Exponential Forecaster

1. wi(p)=1forall peC
2. Foreacht =1, 2. s

i W= [owe(p)dp

ii. Sample p with probability proportional to w;(p), i.e. with probability p(p) = "—{‘(fi)

iii. Update weights

w1 (p) = M), (p)

Good regular regret but can have bad s-shifted regret!

Algorithm

Idea: Mix p
sampling with
Algorithm [Fixed Share|Exponential Forecaster / uniform

1. wi(p)=1forall peC distribution
2.-Foreacht =¥, 2w B

i W= [, w(p)dp

ii. Sample p with probability proportional to w;(p), i.e. with probability p,(p) =

wi1(p) = ‘(1 — CA“AP)“—’t(P) + aZ;

Good s-shifted regret!

we(p)
W,

iii. Update weights

.[C e’\ul(f’)wt(p)dp o = s—1 A= \/s(d log(RT") + l()g(T/s))/T/H
VoL(C)

Zt:

Algorithm

e Mixing with uniform allows faster adaptation to changing ‘best expert’
(explore vs exploit!)

| ——-—o w o0
> =]
® ®
> >
——o o——0
p p

t=1..T/2 t=T/2...T

Algorithm

e Mixing with uniform allows faster adaptation to changing ‘best expert’
(explore vs exploit!)

o
[=2]
(=]

= 055
5
= 050
@
5
———o o———o0 o
E = 5 045 -
5 S <
0.40 -
——o o——0
p p 0 10 20 30 40 50 60
Time
Exponential Forecaster, Fixed Share EF
t=1...T/2 t=T/2... T

it

Algorithm : Why it works?

Ensures that the optimal solution, and its neighborhood, in hindsight have a
large total density

Achieve this by carefully setting the parameters, in particular the exploration
parameter ot which controls the rate at which we allow our confidence on
‘good” experts to change

Lipschitzness and dispersion are then used to ensure that solutions
sufficiently close to the optimum are also good on average

Gets us the upper bound on regret: O(\/sdT log T + sT"¥)

Algorithm

e Implementation is tricky!
o How to maintain weights for uncountably infinite points?
e Efficient implementation in continuous setting (infinite experts) with same
asymptotic regret
o Tricks:
m Use approximate weights
m Sample approximately without computing p, explicitly
m Use logconcave sampling and integration algorithms
o Approximate weights and sampling in multi-dimensional case for
piecewise concave utility functions - O(poly(d,T))
o 1-D piecewise constant functions - O(log T) updates

e DPolynomial time algorithm with same asymptotic expected regret!

Recurring environments

e senvironment shifts may rotate among m < s environments

e ‘m-sparse, s-shifted” regret to capture this, can we do better when m < s

s t;—1
E max Z Z (‘Ut(P;) - 'U't(/)t))

pi €C, =1 t=t
f[):].'(t](tq:T-f‘].. =il

[{p; N<i<s}|<m

o

[=]

Mix with the past distributions!

Al gorlthm ‘m-sparse, s-shifted” regret

Idea: Mix p

Algorithm Generalized Share Exponential Forecaster [a, 7] \ with all
previous

distributions

1. wi(p)=1forall peC

2. Foreacht=1,2,...,T:

i. Wi = [, wi(p)dp
ii. Sample p with probability proportional to w;(p), i.e. with probability p;(p W,

) — wi(p)

iii. Update weights

t
wis1(p) = (1= a)eXPwy(p) + o (/c eAu"(p)wt(P)dP) > Biwpilp)
=1

e~ v(t—i)

Si_e 0 A= ./(mdlog(RT?) + slog(T/s))/T/H, a = s/T and v = s/m1T

where 3; ; =

Rr < O(H\/T(mdlog(RT?) + slog(mT/s)) + (mH + L)T*~7)

Algorithm

e Generalized Share helps in recurring environments
o Aslong as the optimal region recurs, it can give better performance

value

/

value
7
I

value

Algorithm

e Generalized Share helps in recurring environments
o Aslong as the optimal region recurs, it can give better performance

value

Regret bound:

‘/‘o——o g ./
o—0 o—0 T; /\\ *>—e
p p

O(vVsdT log T + sT'F)

= O(y/(md+s)TlogT + mT"' ")

Lower bound

006

e QOur ‘mean adversary’ doesn’t work as it is not dispersed

value

T Too concentrated!

Lower bound

e Need a new, smarter way which ensures dispersion

Lower bound

e Need a new, smarter way which ensures dispersion
o Ingredient #1 A(Q)

with
probability
Y2 each

value
[—
®

e

Lower bound

e Need a new, smarter way which ensures dispersion
o Ingredient #1 A(Q)

with
% —t OR %ﬁ ‘ ¢ probability
7 o 7 Y2 each
O o, 0
t=1...T

Regret = E[OPT — Any]
= Q(T)

Lower bound

e Need a new, smarter way which ensures dispersion
o Ingredient #1 A(Q)

with
% —t OR %ﬁ ‘ ¢ probability
7 o 7 Y2 each
O o, 0
t=1...T

s-shifting Regret =
E[OPT — Any] = Q(\sT)

Lower bound

©O

e Need a new, smarter way which ensures dispersion
o Ingredient #1 A(Q)

. But still
wit NOT
73‘ OR Tz" probability dispersed!
7 o 7 Y5 each
Q » Q »
t=1...T

s-shifting Regret =
E[OPT — Any] = Q(\sT)

Lower bound

e Need a new, smarter way which ensures dispersion

o Ingredient #2: s phases with T/s fns each

Each phase has two parts:
First: Dispersed A(0)’s
73‘ ‘ — in the center
| @
p
t=1... T/s-T"F

Regret = QNT/s)

Lower bound

e Need a new, smarter way which ensures dispersion

o Ingredient #2: s phases with T/s fns each

Each phase has two parts:

Second: “‘Mean’

‘-—i ‘>—i — Halving Adversary

p p

value
value

t=1... T/s-T"F t=T/s-T*F ... T/s
Regret = Q(NT/s) Regret = Q(T'F)

Lower bound

e Need a new, smarter way which ensures dispersion
o Ingredient #2: s phases with T/s fns each

Each phase has two parts:

6 Successive phases in

‘»—1 ‘»—1 _. largest ‘unused’ interval

value
value

p p
t=1... T/s-T'F t=T/s-TF ... T/s Total Regret
Regret = Q(VT/s) Regret = Q(T'F) -

QST + sTP)

Experiments

e «-Lloyd clustering [Balcan Dick White, NeurIPS18]:
o Way to initialize k-means centers
o Pick successive centers randomly with probability proportional to d*
o Interpolates between random sampling (a = 0), k-means++ (a =2) and
farthest first traversal (a = o)

Experiments

e o-Lloyd clustering [Balcan Dick White, NeurIPS18]:
o Way to initialize k-means centers
o Pick successive centers randomly with probability proportional to d*
o Interpolates between random sampling (a = 0), k-means++ (a =2) and
farthest first traversal (a = o)
e Quality of clusters is a piecewise constant function of o with potentially sharp
changes cascading from initial choice of centers
o Can we learn data-specific good a?

Experiments

e For example, considering clustering the images of digits in MNIST.

o p=a € [0, 10]

o u(p) = Hamming cost of clustering produced by a-Llyod clustering
e How to simulate changing distributions?

o We sample from different subsets of digits at different times

o E.g.evendigitsfort=1... T/2 and odd digits for t =T/2+1 ... T

Experiments

e Average 2-shifted regret for a-Lloyd clustering (k = 2):
o Half the classes till T/2 and other half for other half.

0.08 =

0.07 - ”
b -t
@ @ : @
5 S 006 - | =)
g g v g

S @

@ % 0.05 &
o
g g 004- o
< = <

0.03 -

% 1 2 » 0 0 ©

Time Time
(a) MNIST (b) Omniglot small 1 (¢) Omniglot (full)

Figure 1: Average 2-shifted regret vs game duration 7" for online clustering against 2-shifted distributions. Color
scheme: Exponential Forecaster, Fixed Share EF, Generalized Share EF

Experiments

e Average 2-shifted regret for a-Lloyd clustering (k = #classes):
o All but one class presented in each phase.

0.055 -

e Fo 0 050 =/ . e
[[J] \ 1]
o e \ =
> g o005 N\ i
- =4 \ -
& & 0040 - g
d d d
g g 0035 - g
< < ~A <
0.030 - ~ N\
A
0025 e
20 25 30 33 4 45 50
Time Time
(a) MNIST (b) Omniglot small 1 (¢) Omniglot (full)

Figure 3: Average k-shifted regret vs game duration 7" for online clustering against k-shifted distributions. Color
scheme: Exponential Forecaster, Fixed Share EF, Generalized Share EF

Experiments

e Fixed Share vs Generalized Share: How to decide?

30 - 6- 30-
25~ 5- 25-
@ @ @
é 20~ § 4 - § 20~
E 15 - g 3- g 15 -
v (¥ [*)
®i10- e 2- 210-
£ it #:
05 - 1- 05 -
00 C ' ‘ 1 i [l i\ 0‘ | . 1] i ‘ Oo E i L] 1\ ']
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
a a a
(a) MNIST (b) Omniglot_small_1 (c) Omniglot (full)

Figure 4: Number of recurrences of various values of « in the top decile across all rounds

Experiments

e Same dataset (MNIST), different clustering classes

007 - 0.0400 -
e 006- 4 R
[2 006 - § 00375~
o o o
2 005-] @ 00350~
] o 005 - o
& > © 00325 -
@ 004- @ 004-]
S g 2 00300 -
=4 < <
0.03 - 00275 -
003 -
20 30 2 0 60 2 30 a0 50 60 002503 30 2 50 60
Time Time D
(a) {0,2,4,6,8} (b) {0,1,2,3,4} (c) {2,3,5,6,9}
00375 - 0055
0.050 - (!
§ g 00350 5 0050
5 0045 - £ 00325 - p
é',‘ g,' g,’ 0.045 -
00300 -
& 0040 - & & 0040 -
@ ® 00275 - o
) [@ =
2 0035 Z 00250 - z £.035
0030 - 00225 - 0.030 -
2 30) 50 &0 2 30) 50 (0025 5 30) 50 &0
Time Time Time

(d) {1,3,4,8,9} (e) {0,4,5,7,8} (f) Average

Takeaways

e Hard problems have heuristics, no one heuristic may dominate all others.

e [f you have to solve a problem several times, it pays to interpolate heuristics
and learn data-specific algorithm/parameters.

e [t's possible to adapt to sudden, sharp changes -- provided the
data/distribution is ‘nice” enough.

e Careful balance of exploring/revising and exploiting/reusing is key.

e [t may be impossible to learn if data is not ‘nice’, so probably worth knowing
if there is no hope.

Thank you!

QUESTIONS?

