
Learning piecewise Lipschitz fns
in changing environments

Mar 3, 2020
Joint work with: N Balcan, T Dick

Presented by: Dravy Sharma
dravyans@andrew.cmu.edu
Grad Student, CSD, CMU

Motivation
Data-driven algorithm selection:

● Think of hard combinatorial problems
E.g. clustering, integer programming, subset selection

Motivation
Data-driven algorithm selection:

● Think of hard combinatorial problems
E.g. clustering, integer programming, subset selection

Heuristic
algorithms!

Single linkage

Complete linkage

Data-driven algorithm selection:
● Think of hard combinatorial problems

E.g. clustering, integer programming, subset selection
● Suppose you have to repeatedly solve instances

 (drawn from unknown distribution)

Motivation

Day 1 Day 2 Day 3

Motivation
Data-driven algorithm selection:

● Think of hard combinatorial problems
E.g. clustering, integer programming, subset selection

● Suppose you have to repeatedly solve instances
 (drawn from unknown distribution)

 Interpolate between heuristics with parameter ⍴
 Learn data-specific optimal ⍴

Heuristic
algorithms!

⍴()+(1-⍴)()

Motivation

Heuristic
algorithms!

Data-driven algorithm selection:
● Think of hard combinatorial problems

E.g. clustering, integer programming, subset selection
● Suppose you have to repeatedly solve instances

 (drawn from unknown distribution)

 Interpolate between heuristics with parameter ⍴
 Learn data-specific optimal ⍴

 ML algorithms are often algo families
 (d hyperparameters ⇒ ⍴ ∈ Rd)

How does algorithm payoff change with parameter ⍴?
● Can have sharp discontinuities!

E.g. Choosing different initial centers in clustering can cascade into very
different results

Motivation

One center
change

How does algorithm payoff change with parameter ⍴?
● Can have sharp discontinuities!

E.g. Choosing different initial centers in clustering can cascade into very
different results

● Typically piecewise Lipschitz (discontinuous, but each piece has bounded
slope)

Motivation

Motivation

Day 1 Day 2 Day 3

Choosing optimal ⍴ = online learning of piecewise Lipschitz fns

But why online?
● Infeasible to use all data (computationally or otherwise)
● Dynamically adapt to new data patterns (e.g. changing user base)

Motivation

Motivation (theoretical)

Also generalizes previously known studies in online learning:
● OCO - Online convex optimization
● Optimization of nonconvex but Lipschitz functions

● At each time t = 1 … T

Online learning

● At each time t = 1 … T:
○ We need to pick a point ⍴t in domain

Online learning

⍴t

ut

● At each time t = 1 … T:
○ We need to pick a point ⍴t in domain
○ Payoff function ut(.) is revealed

Online learning

⍴t

ut

● At each time t = 1 … T:
○ We need to pick a point ⍴t in domain
○ Payoff function ut(.) is revealed
○ We experience payoff ut(⍴t)

Online learning

⍴t

ut

● At each time t = 1 … T:
○ We need to pick a point ⍴t in domain
○ Payoff function ut(.) is revealed
○ We experience payoff ut(⍴t)

Online learning

⍴t

ut

Goal:
Maximize Σtut(⍴t)

● Regret: compares performance of an online
algorithm with a somewhat more constrained
offline optimal algorithm.

Online learning

● Regret: compares performance of an online
algorithm with a somewhat more constrained
offline optimal algorithm.

● Standard/static regret: Performance relative to
best fixed point in hindsight

Online learning

● Regret: compares performance of an online
algorithm with a somewhat more constrained
offline optimal algorithm.

● Standard/static regret: Performance relative to
best fixed point in hindsight

Online learning

If regret is sublinear, average regret = o(T)/T → 0 as T increases

● Regret: compares performance of an online
algorithm with a somewhat more constrained
offline optimal algorithm.

● Standard/static regret: Performance relative to
best fixed point in hindsight

Online learning

● Not suitable for changing environments!

● ‘s-shifted regret’ compares performance against offline algorithm which
can use up to s experts by switching s − 1 times. [Herbster, Warmuth ’98]

Online learning

t0=1 ts-1=T t1 t2 t3
ts-1

... ⍴1* ⍴2* ⍴3* ⍴s*

● Lower bound for arbitrary piecewise Lipschitz functions: sublinear regret is
impossible for any algorithm even for s = 1!

A mean adversary

● Lower bound for arbitrary piecewise Lipschitz functions: sublinear regret is
impossible for any algorithm even for s = 1!

A mean adversary

OR
with
probability
½ each

Halving Adversary

t = 1
Regret

=
½

● Lower bound for arbitrary piecewise Lipschitz functions: sublinear regret is
impossible for any algorithm even for s = 1!

A mean adversary

Halving Adversary

t = 1
Regret

=
½

● Lower bound for arbitrary piecewise Lipschitz functions: sublinear regret is
impossible for any algorithm even for s = 1!

A mean adversary

OR
with
probability
½ each

Halving Adversary

t = 2
Regret

=
½

● Lower bound for arbitrary piecewise Lipschitz functions: sublinear regret is
impossible for any algorithm even for s = 1!

A mean adversary

OR
with
probability
½ each

Halving Adversary

t = 2

and so on ...

Regret
=
½

● Adding up regret across all rounds, we get linear regret. Offline OPT can get
all rounds right, we only get half in expectation.

A mean adversary

Halving Adversary

Regret
=

T/2

● Is it ever possible to learn piecewise Lipschitz functions? Is so, when?

Turns out dispersion is necessary and sufficient!

● β-dispersed: if for all T and for all 𝝐 ≤ T-β

Intuitively, concentration of discontinuities in space, when averaged over
time is bad for learning!

Dispersion

● β-dispersed: if for all T and for all 𝝐 ≤ T-β

Dispersion

Main results
● Upper bound on ‘s-shifted regret’: There exists an efficient algorithm with

regret bounded by

● Lower bound
○ Matching modulo root-log(T) factor

Dispersion gives a tight characterization!

Algorithm [Balcan Dick Vitercik, FOCS’18]

Good regular regret but can have bad s-shifted regret!

Algorithm

Good s-shifted regret!

Idea: Mix ⍴
sampling with

uniform
distribution

Algorithm

● Mixing with uniform allows faster adaptation to changing `best expert’
(explore vs exploit!)

t = 1 … T/2 t = T/2 … T

Algorithm

● Mixing with uniform allows faster adaptation to changing `best expert’
(explore vs exploit!)

t = 1 … T/2 t = T/2 … T

Algorithm : Why it works?
● Ensures that the optimal solution, and its neighborhood, in hindsight have a

large total density
● Achieve this by carefully setting the parameters, in particular the exploration

parameter α which controls the rate at which we allow our confidence on
‘good’ experts to change

● Lipschitzness and dispersion are then used to ensure that solutions
sufficiently close to the optimum are also good on average

Gets us the upper bound on regret:

Algorithm
● Implementation is tricky!

○ How to maintain weights for uncountably infinite points?
● Efficient implementation in continuous setting (infinite experts) with same

asymptotic regret
○ Tricks:

■ Use approximate weights
■ Sample approximately without computing pt explicitly
■ Use logconcave sampling and integration algorithms

○ Approximate weights and sampling in multi-dimensional case for
piecewise concave utility functions - O(poly(d,T))

○ 1-D piecewise constant functions - O(log T) updates

● Polynomial time algorithm with same asymptotic expected regret!

Recurring environments
● s environment shifts may rotate among m < s environments

● ‘m-sparse, s-shifted’ regret to capture this, can we do better when m ≪ s

 Mix with the past distributions!

‘m-sparse, s-shifted’ regretAlgorithm Idea: Mix ⍴
with all

previous
distributions

● Generalized Share helps in recurring environments
○ As long as the optimal region recurs, it can give better performance

Algorithm

● Generalized Share helps in recurring environments
○ As long as the optimal region recurs, it can give better performance

Regret bound:

Algorithm

● Our ‘mean adversary’ doesn’t work as it is not dispersed

Lower bound

Too concentrated!

● Need a new, smarter way which ensures dispersion

Lower bound

● Need a new, smarter way which ensures dispersion
○ Ingredient #1 A(ρ)

Lower bound

OR
with
probability
½ each

t = 1 … T

ρ ρ

● Need a new, smarter way which ensures dispersion
○ Ingredient #1 A(ρ)

Lower bound

OR
with
probability
½ each

t = 1 … T

ρ ρ

Regret = E[OPT ー Any]
= Ω(√T)

● Need a new, smarter way which ensures dispersion
○ Ingredient #1 A(ρ)

Lower bound

OR
with
probability
½ each

t = 1 … T

ρ ρ

s-shifting Regret =
E[OPT ー Any] = Ω(√sT)

● Need a new, smarter way which ensures dispersion
○ Ingredient #1 A(ρ)

Lower bound

OR
with
probability
½ each

t = 1 … T

ρ ρ

s-shifting Regret =
E[OPT ー Any] = Ω(√sT)

But still
NOT
dispersed!

● Need a new, smarter way which ensures dispersion
○ Ingredient #2: s phases with T/s fns each

Each phase has two parts:

Lower bound

t = 1 … T/s-T1-β

Regret = Ω(√T/s)

First: Dispersed A(ρ)’s
in the center

● Need a new, smarter way which ensures dispersion
○ Ingredient #2: s phases with T/s fns each

Each phase has two parts:

Lower bound

t = 1 … T/s-T1-β

Regret = Ω(√T/s)

Second: ‘Mean’
Halving Adversary

t = T/s-T1-β … T/s
Regret = Ω(T1-β)

● Need a new, smarter way which ensures dispersion
○ Ingredient #2: s phases with T/s fns each

Each phase has two parts:

Lower bound

t = 1 … T/s-T1-β

Regret = Ω(√T/s)

Successive phases in
largest ‘unused’ interval

t = T/s-T1-β … T/s
Regret = Ω(T1-β)

Total Regret
=

Ω(√sT + sT1-β)

● α-Lloyd clustering [Balcan Dick White, NeurIPS’18]:
○ Way to initialize k-means centers
○ Pick successive centers randomly with probability proportional to dα

○ Interpolates between random sampling (α = 0), k-means++ (α = 2) and
farthest first traversal (α = ∞)

Experiments

● α-Lloyd clustering [Balcan Dick White, NeurIPS’18]:
○ Way to initialize k-means centers
○ Pick successive centers randomly with probability proportional to dα

○ Interpolates between random sampling (α = 0), k-means++ (α = 2) and
farthest first traversal (α = ∞)

● Quality of clusters is a piecewise constant function of α with potentially sharp
changes cascading from initial choice of centers
○ Can we learn data-specific good α?

Experiments

● For example, considering clustering the images of digits in MNIST.
○ ⍴ = α ∈ [0, 10]
○ ut(⍴) = Hamming cost of clustering produced by α-Llyod clustering

● How to simulate changing distributions?
○ We sample from different subsets of digits at different times
○ E.g. even digits for t = 1 … T/2 and odd digits for t = T/2+1 … T

Experiments

● Average 2-shifted regret for α-Lloyd clustering (k = 2):
○ Half the classes till T/2 and other half for other half.

Experiments

● Average 2-shifted regret for α-Lloyd clustering (k = #classes):
○ All but one class presented in each phase.

Experiments

● Fixed Share vs Generalized Share: How to decide?

Experiments

● Same dataset (MNIST), different clustering classes

Experiments

Takeaways
● Hard problems have heuristics, no one heuristic may dominate all others.
● If you have to solve a problem several times, it pays to interpolate heuristics

and learn data-specific algorithm/parameters.
● It’s possible to adapt to sudden, sharp changes -- provided the

data/distribution is `nice’ enough.
● Careful balance of exploring/revising and exploiting/reusing is key.
● It may be impossible to learn if data is not `nice’, so probably worth knowing

if there is no hope.

Thank you!

QUESTIONS?

