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Motivation

Heuristic 
algorithms!

Data-driven algorithm selection:
● Think of hard combinatorial problems

E.g. clustering, integer programming, subset selection
● Suppose you have to repeatedly solve instances 

        (drawn from unknown distribution)
        
        Interpolate between heuristics with parameter ⍴
        Learn data-specific optimal ⍴

        ML algorithms are often algo families
        ( d hyperparameters ⇒ ⍴ ∈ Rd )



How does algorithm payoff change with parameter ⍴?
● Can have sharp discontinuities!

E.g. Choosing different initial centers in clustering can cascade into very 
different results
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How does algorithm payoff change with parameter ⍴?
● Can have sharp discontinuities!

E.g. Choosing different initial centers in clustering can cascade into very 
different results

● Typically piecewise Lipschitz (discontinuous, but each piece has bounded 
slope)

Motivation



Motivation

Day 1 Day 2 Day 3

Choosing optimal ⍴ = online learning of piecewise Lipschitz fns



But why online?
● Infeasible to use all data (computationally or otherwise)
● Dynamically adapt to new data patterns (e.g. changing user base)

Motivation



Motivation (theoretical)

Also generalizes previously known studies in online learning:
● OCO - Online convex optimization
● Optimization of nonconvex but Lipschitz functions
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● At each time t = 1 … T:
○ We need to pick a point ⍴t in domain  
○ Payoff function ut(.) is revealed
○ We experience payoff ut(⍴t)

Online learning

⍴t

ut

Goal:
Maximize Σtut(⍴t)



● Regret: compares performance of an online 
algorithm with a somewhat more constrained 
offline optimal algorithm.
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● Regret: compares performance of an online 
algorithm with a somewhat more constrained 
offline optimal algorithm.

● Standard/static regret: Performance relative to 
best fixed point in hindsight

Online learning

● Not suitable for changing environments!



● ‘s-shifted regret’ compares performance against offline algorithm which 
can use up to s experts by switching s − 1 times.  [Herbster, Warmuth ’98]

Online learning

t0=1 ts-1=T  t1 t2 t3
ts-1

...  ⍴1*   ⍴2*   ⍴3*   ⍴s*



● Lower bound for arbitrary piecewise Lipschitz functions: sublinear regret is 
impossible for any algorithm even for s = 1!
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● Lower bound for arbitrary piecewise Lipschitz functions: sublinear regret is 
impossible for any algorithm even for s = 1!

A mean adversary

OR
with 
probability 
½ each

Halving Adversary

t = 2

and so on ...

Regret
=
½ 



● Adding up regret across all rounds, we get linear regret. Offline OPT can get 
all rounds right, we only get half in expectation.

A mean adversary

Halving Adversary

Regret
=

T/2 



● Is it ever possible to learn piecewise Lipschitz functions? Is so, when?

Turns out dispersion is necessary and sufficient!

● β-dispersed: if for all T and for all 𝝐 ≤ T-β

Intuitively, concentration of discontinuities in space, when averaged over 
time is bad for learning!

Dispersion
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Main results
● Upper bound on ‘s-shifted regret’: There exists an efficient algorithm with 

regret bounded by

● Lower bound
○ Matching modulo root-log(T) factor

Dispersion gives a tight characterization!



Algorithm [Balcan Dick Vitercik, FOCS’18]

Good regular regret but can have bad s-shifted regret!



Algorithm

Good s-shifted regret!

Idea: Mix ⍴ 
sampling with 

uniform 
distribution



Algorithm
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Algorithm : Why it works?
● Ensures that the optimal solution, and its neighborhood, in hindsight have a 

large total density
● Achieve this by carefully setting the parameters, in particular the exploration 

parameter α which controls the rate at which we allow our confidence on 
‘good’ experts to change

● Lipschitzness and dispersion are then used to ensure that solutions 
sufficiently close to the optimum are also good on average

Gets us the upper bound on regret:



Algorithm
● Implementation is tricky!

○ How to maintain weights for uncountably infinite points?
● Efficient implementation in continuous setting (infinite experts) with same 

asymptotic regret
○ Tricks:

■ Use approximate weights
■ Sample approximately without computing pt explicitly
■ Use logconcave sampling and integration algorithms

○ Approximate weights and sampling in multi-dimensional case for 
piecewise concave utility functions - O(poly(d,T))

○ 1-D piecewise constant functions - O(log T) updates

● Polynomial time algorithm with same asymptotic expected regret!



Recurring environments
● s environment shifts may rotate among m < s environments

● ‘m-sparse, s-shifted’ regret to capture this, can we do better when m ≪ s

         Mix with the past distributions!



‘m-sparse, s-shifted’ regretAlgorithm Idea: Mix ⍴ 
with all 

previous 
distributions



● Generalized Share helps in recurring environments
○ As long as the optimal region recurs, it can give better performance
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● Generalized Share helps in recurring environments
○ As long as the optimal region recurs, it can give better performance

Regret bound:

Algorithm



● Our ‘mean adversary’ doesn’t work as it is not dispersed

Lower bound

Too concentrated!
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● Need a new, smarter way which ensures dispersion
○ Ingredient #1 A(ρ)

Lower bound

OR
with 
probability 
½ each

t = 1 … T

ρ ρ

s-shifting Regret = 
E[OPT ー Any] = Ω(√sT)

But still 
NOT 
dispersed!
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● Need a new, smarter way which ensures dispersion
○ Ingredient #2: s phases with T/s fns each

Each phase has two parts:

Lower bound

t = 1 … T/s-T1-β

Regret = Ω(√T/s)

Successive phases in 
largest ‘unused’ interval

t = T/s-T1-β … T/s
Regret = Ω(T1-β)

Total Regret
=

Ω(√sT + sT1-β)



● α-Lloyd clustering [Balcan Dick White, NeurIPS’18]:
○ Way to initialize k-means centers
○ Pick successive centers randomly with probability proportional to dα

○ Interpolates between random sampling (α = 0), k-means++ (α = 2) and 
farthest first traversal (α = ∞)

Experiments



● α-Lloyd clustering [Balcan Dick White, NeurIPS’18]:
○ Way to initialize k-means centers
○ Pick successive centers randomly with probability proportional to dα

○ Interpolates between random sampling (α = 0), k-means++ (α = 2) and 
farthest first traversal (α = ∞)

● Quality of clusters is a piecewise constant function of α with potentially sharp 
changes cascading from initial choice of centers
○ Can we learn data-specific good α?

Experiments



● For example, considering clustering the images of digits in MNIST.
○ ⍴ = α ∈ [0, 10]
○ ut(⍴) = Hamming cost of clustering produced by α-Llyod clustering

● How to simulate changing distributions?
○ We sample from different subsets of digits at different times
○ E.g. even digits for t = 1 … T/2 and odd digits for t = T/2+1 … T

Experiments



● Average 2-shifted regret for α-Lloyd clustering (k = 2):
○ Half the classes till T/2 and other half for other half.

Experiments



● Average 2-shifted regret for α-Lloyd clustering (k = #classes):
○ All but one class presented in each phase.

Experiments



● Fixed Share vs Generalized Share: How to decide?

Experiments



● Same dataset (MNIST), different clustering classes

Experiments



Takeaways
● Hard problems have heuristics, no one heuristic may dominate all others.
● If you have to solve a problem several times, it pays to interpolate heuristics 

and learn data-specific algorithm/parameters.
● It’s possible to adapt to sudden, sharp changes -- provided the 

data/distribution is `nice’ enough.
● Careful balance of exploring/revising and exploiting/reusing is key.
● It may be impossible to learn if data is not `nice’, so probably worth knowing 

if there is no hope.



Thank you!

QUESTIONS?


